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Abstract. We perform 3D radiative transfer calculations in
NLTE in the simple two-level atom approximation on the Mas-
Par MP-1, which contains 8192 processors and is a single in-
struction multiple data (SIMD) machine, an example of the new
generation of massively parallel computers. On such a machine,
all processors execute the same command at a given time, but on
different data. To make radiative transfer calculations efficient,
we must re-consider the numerical methods and storage of data.
To solve the transfer equation, we adopt the short characteristic
method and examine different acceleration methods to obtain
the source function. We use the ALI method and test local and
non-local operators. Furthermore, we compare the Ng and the
orthomin methods of acceleration. We also investigate the use
of multi-grid methods to get fast solutions for the NLTE case.
In order to test these numerical methods, we apply them to two
problems with and without periodic boundary conditions.

Key words: radiative transfer — methods: numerical — stars:
atmospheres

1. Introduction

The classical radiative transfer problem in astronomy has been
concerned with calculating spectra of stellar atmospheres at rest
(Mihalas 1978). Because of the spherical symmetry, this is es-
sentially a one-dimensional problem with the radius as the only
spatial coordinate. Several powerful methods for solving the ra-
diative transfer equation for this case have been known for many
years (Feautrier 1964; Auer & Mihalas 1969; Rybicki 1971),
and it has become possible to include in such calculations many
line transitions. In addition, the statistical and radiative equi-
librium equations and the hydrostatic equations can be solved
self-consistently (e.g. Werner 1989; Dreizler 1991). In 3D, how-
ever, it has not been possible to do this on present computers
so far, both because the size of the problem exhausts the mem-
ory space, and because such computations would require far too
much computing time. Three-dimensional calculations become
necessary when astrophysical objects are not spherically sym-
metrical. Accretion disks are such objects (Adam 1990). Other
examples are certain types of planetary nebulae (Icke et al. 1992)

and gas clouds generated by collisions between stars (Ruffert
1992). To calculate spectra of such objects, one therefore needs
to solve the radiative transfer equation in three dimensions. The
increasing power of computers has now made it possible to
tackle such problems. Several approaches to solving the trans-
fer equations in more than one dimension have been made in
recent years. Stenholm et al. (1991) computed the specific in-
tensity at every point of a 3D cartesian grid by approximating
the transfer equation as a difference equation. Another way of
solving the transfer equation is by using the so-called short char-
acteristics (Kunasz & Auer 1988). Recently Klein et al. (1989)
applied the finite element method to this problem. Except for
the finite difference method, all these methods have only been
applied to 2D cases so far.

In the case of non-local thermal equilibrium (NLTE), the
source function, on which the radiation field depends, is itself
a function of the radiation field. The transfer equation then be-
comes an integral-differential equation. To solve this problem,
one generally resorts to iterative methods, since the size of the
problem can easily prohibit the storage of all the relevant quan-
tities. The classical method is the A-iteration (Mihalas 1978).
However, the convergence rate can be slow in interesting prob-
lems. For that reason, different ways of accelerating the con-
vergence have been developed. Operator splitting was first used
by Cannon (1973a, b) for radiative transfer problems. It was
then further developed by, among others, Scharmer (1981) and
Werner & Husfeld (1985), the latter introducing the term ac-
celerated A-iteration (ALI). Klein et al. (1989) proposed a new
double-splitting method to get a faster convergence. Recently,
Turek (1993) proposed a conjugate gradient-like method to ob-
tain the source function, and Turek & Wehrse (1993) applied it
to astrophysical problems.

Traditionally, all radiative transfer calculations have been
performed on scalar and vector computers. However, in recent
years massively parallel computers have become available in
a variety of different architectures distinguished in two major
classes of parallel machines (Hockney & Jesshope 1988). On
the one hand, there are the multiple instruction multiple data
(MIMD) machines, on which each processor can make com-
putations completely independently of other processors. But
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the individual processors of such computers have to be fairly
complex, are therefore relatively expensive, and the number of
processors is usually small. The advantage of such computers
is that a program can be run on different processors with dif-
ferent parameters without making adjustments within the pro-
gram. Therefore, programming such machines can be relatively
straightforward. In contrast to these MIMD computers are the
single instruction multiple data (SIMD) machines, on which all
processors perform exactly the same computations. The pro-
cessors therefore can be relatively simple and are inexpensive,
and such computers can contain a large number of processors.
There the code mainly consists of array manipulations, and a
language in which parallel array operations are easily defined
is required to program such computers efficiently. Therefore,
SIMD machines represent the more radical approach to paral-
lel programming. Overall, it cannot be decided yet which ap-
proach in parallel computers will carry through, and currently
applications are designed for both types of computers, which is
reflected in conference proceedings on parallel computing (e.g.
Meuer 1991).

In this paper we discuss NLTE radiative transfer calculations
in three dimensions that have been performed on the SIMD ma-
chine MasPar MP-1. To our knowledge, no radiative transfer
calculations have been performed so far on SIMD machines.
First we describe the MasPar MP-1 in Sect. 2. Then we give a
short description of the theory of radiative transfer and acceler-
ation methods as far as it is necessary here. In the fourth section
we describe the way we solve the transfer equation on this com-
puter, and the way the computing time scales with the size of
the problem. After that we describe the convergence properties
of these calculations for two problems. In one we have Dirichlet
boundary conditions, and in the other problem periodic bound-
ary conditions. Final conclusions are presented in Sect. 6.

2. The MasPar MP-1

When programming on conventional computers, one needs to
know very little to nothing at all about the architecture of the
computer. This is not the case for massively parallel computers.
There the architecture directly influences the style of computer
codes, as one has to think in terms of how data are flowing
macroscopically between different microprocessors when the
program is executed. Even further, the existence of a certain
architecture might make the solution of one problem very easy
and fast, while essentially prohibiting the treatment of another
problem on this particular computer. Because of these reasons,
we have to give a fairly detailed description of the architecture
of the MP-1. However, we mostly restrict ourselves to those
features of the MP-1 that are important to us here. (The following
description is based on the manuals available for the MasPar
MP-1.)

The MP-1 is a SIMD machine, which means that all proces-
sors execute the same commands. It contains 8192 processing
elements (PEs), although this number can be extended to 16384.
The PEs are arranged in a two-dimensional grid with 128 PEs
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in the z and 64 PEs in the y direction. The data memory of
the PEs then forms a natural z direction. Here each processor
contains 64 kByte of memory space. As all processors perform
the same operations, they need to be controlled by some central
unit, which is the array control unit (ACU). While all parallel
operations are performed on the PE grid, scalar calculations are
done either on the ACU or the front end (FE), which is here
a DEC 5000 workstation. Communication between the FE and
the PE grid is possible through the ACU, which can broadcast
scalar data simultaneously onto all PEs.

An ideal problem for such a SIMD machine would be one,
in which all the processors could operate independently from
one another, i.e. no data would need to be transfered between
processors. However, in most realistic applications, this is not
the case. We therefore have to describe the way processors can
communicate with each other. On the MasPar there are essen-
tially two ways to do that. Each processor on the PE grid is
directly connected with the surrounding eight processors. This
so-called X-NET enables the transfer of entire floating point
numbers, and communication is therefore very fast. But this
method of data transfer is not useful, if two processors which
have to communicate with each other are very far apart on the
PE grid. For this case exists the global router, which can connect
any two PEs concurrently. Up to 512 simultaneous communica-
tions are possible on the MP-1. Because of the smaller number
of possible connections between PEs, this type of communica-
tion is relatively slow.

To program a SIMD machine, one needs a computer lan-
guage that allows parallel manipulation of data in a simple way.
On the MP-1, two languages are currently available: MPL and
MPFORTRAN. MPL is an enhancement of C and is the funda-
mental programming language on the MP-1. The code described
here, however, is written in MPFORTRAN, which is close to
the new FORTRAN 90 standard and is very suitable for parallel
machines because of its array syntax. It also has the advantage
that the programmer does not need to explicitly consider the
number of available processors (although this number strongly
influences the execution time of the program). If one has for
example a three-dimensional array of some arbitrary size, then
the first two dimensions are automatically allocated along the =
and y axis of the PE grid, while the third dimension is stored in
the memory of the PEs. If the = and y dimensions of the array
are too large to fit onto the PE grid, the array is cut and stacked
into the memory of the PEs and forms virtual layers there. (It is
possible, but normally not necessary, to override this default.)
Furthermore, the programmer does not need to decide explic-
itly how communications have to be performed, as is necessary
in MPL, which makes the programming less tedious. It has the
additional advantage that the code is less specialized for the ar-
chitecture of the MP-1 and therefore can be adapted to different
SIMD machines or conventional scalar machines more easily
once the FORTRAN 90 standard is in general use.
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3. Radiative transfer

To calculate the spectrum of an object in three dimensions, one
must solve the radiative transfer equation (Mihalas 1978)

nVI,(r,n)=(d/ds)l,(r,n)
= Xy (r,n)(Sy(r,n) — I,(r,n)) e8]

where x is the opacity, S is the source function, I is the specific
intensity, and no time dependence is considered. The vector n
gives the direction of the ray, v is the frequency, and 7 gives the
position. The parameter s is the length along the ray propagating
in the direction n. The transfer equation can easily be integrated
along the line of sight, and thus one obtains the formal solution

I,(s) =1, (0) exp(—7,(s))+

Tu(8)
/ dr, S, (7,,) exp(r, — 7,(s)) (2)
0

T(s) = /0 X (s)ds' 3

where 7 is the optical depth along the line of sight. In stellar
atmospheres the radius is normally the only spatial variable, and
one needs to consider only one angle for the vector nn. However,
if the object has no spherical symmetry, all quantities depend
in general on three spatial variables, and 72 is a function of two
angles. As the opacity is normally also frequency dependent,
the specific intensity becomes a function of six variables.

For a two-level atom in statistical equilibrium, the source
function can be written as

S=(1—-¢€)J+eB 4)

where B is the Planck function, J is the mean intensity, and €
is the thermalization parameter. The latter represents the prob-
ability that a photon is absorbed and therefore converted into
thermal energy. The mean intensity for the two-level atom be-
comes

J = (1/4m) / an / dv®,(n)I,n) . )

The function @ is the absorption profile. Clearly the source func-
tion is not only dependent on local quantities when € < 1, but
also depends on the radiation field, which the transfer equation
makes a strongly non-local quantity. The specific intensity and
therefore J depend on the source function, and one can write
J = A[S] where the A-operator (in the case of the two-level
atom a linear operator) is acting on S. After discretization of
the problem onto a spatial grid, one obtains a system of linear
equations J = AS where A is now a matrix. In principle, one
can directly solve for the source function by matrix inversion

S=[1-(1-¢eA] 'eB (6)

where 1 is the unity matrix. However, if one has a three-
dimensional grid with 64 points in each dimension, the A-matrix
has about 6.9 10'° elements. Such a matrix cannot be stored on
present machines, and an inversion becomes impossible. The
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problem has to be solved iteratively. The source function of the
(i+1)th iteration derives from the ith source function by

S* = (1 —e)AS* +¢B . @)

This is the classical A-iteration.

As we already pointed out above, the convergence can be
accelerated significantly with the ALI method. It is now in com-
mon use and has been reviewed by several authors in recent
years (Kalkofen 1987; Rybicki 1991; Hubeny 1992). One writes
A = A* + (A — A*), where A* is an approximation to the true
A-operator. The iteration scheme can then be written as
SH -8 =[1—(1-eA*]7'(S™ - 5% ®)
where S™S is the source function obtained through a classical
A-iteration from S*. This is essentially a Jacobi or block Jacobi
iteration depending on the form of the approximate operator
(Stoer & Bulirsch 1990). When one uses the diagonal of the A-
operator, the above matrix inversion becomes a simple division.
Atlarge optical depths A — 1, and when € < 1 the approximate
operator acts as a large amplification factor. Hamann (1985) and
Werner & Husfeld (1985) were the first to interprete the operator
splitting that way.

Now arises the question of how to construct the approximate
operator. There have been a number of proposals, and we refer
to the review articles for references. However, it was Olson et
al. (1986) who showed mathematically that a nearly optimal
operator is simply the diagonal of the A-matrix. One can find
the diagonal by the definition of the A-matrix that

Jl A11 Aln Sl
=l R ©
Jn An] Ann Sn

The ith column of the A-matrix is therefore the mean inten-
sity, if the source function is zero at all gridpoints except at
the ith position, where it is one. One can therefore use any
method that gives the mean intensity to calculate the A-matrix
as well. The mean intensity at the grid point i is the ith diagonal
element of A.

As Olson & Kunasz (1987) already pointed out, a diago-
nal A* is a local operator as it does not couple different spatial
points. Using this local operator has many advantages computa-
tionally, as it requires few calculations (no matrix inversion has
to be performed) and little memory space, and as it nevertheless
performs well in many cases (MacFarlane 1992). However, in
the optically thin areas the radiation field is highly non-local,
and therefore the off-diagonal elements of the A-matrix are no
longer negligible in comparison to the diagonal elements. There-
fore, one can expect to improve the convergence by including
off-diagonal elements in A*, which then becomes a non-local
operator including spatial coupling. However, what was a sim-
ple division in Eq. (8) in the case of a diagonal A* has now be-
come a matrix inversion. In the one-dimensional case, including
the nearest neighbors results in a tridiagonal matrix (Olson &
Kunasz 1987; Werner 1989). In the two-dimensional case, one
obtains a matrix with nine non-zero elements per row, which was
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used by Steiner (1990). But in the 3D case, a matrix inversion
becomes quite difficult as we get twenty-seven non-zero ele-
ments per row with many zero elements between non-zero ones
in each row. When we therefore include off-diagonal elements,
we will solve Eq. (8) not by directly inverting the matrix, but by
solving the corresponding linear system of equations iteratively
using the Jacobi method. When we have some approximation
S’ for the source function, then the jth step of this iteration can
be written as

@ =2 +[1- (1 - )A°T{(1 — oAz +b— 2T} (10)

where 7 = S9 — 8/, b = SFS — §’ and S™ is the source
function we obtain from .S’ using a classical A-iteration. The
matrix A* is an approximation to the A-matrix that includes
off-diagonal elements, and AP is the diagonal of the A-matrix.
While we avoid the complicated matrix inversion, we need to
make several iteration steps before we get the vector  with a
sufficient accuracy. But as the elements of the diagonal of the A-
matrix are always the largest elements per row and column, we
can expect to get a sufficiently accurate solution quite rapidly,
especially when we use AP to get a good initial estimate for the
vector .

There are additional ways of accelerating the convergence.
We test the Ng method (Ng 1974) that was first introduced by
Buchler & Auer (1985) for radiative transfer problems. Further-
more, we use the orthomin method (Vinsome 1976), which was
first applied by Klein et al. (1989) to radiative transfer problems.
Both can be combined with the ALI method. In addition to the
descriptions of these methods in the above-mentioned papers,
they have been discussed and compared by Auer (1991), and we
therefore will not give a detailed description here. The essential
idea behind both methods is to use several previously calcu-
lated source functions in order to estimate the correct source
function. The Ng method gets the new estimate by minimiz-
ing the residual directly, while the orthomin method minimizes
the residual with respect to a set of conjugate vectors. In com-
parison, the ALI method uses the previously calculated source
function and calculates the next source function by a different
matrix multiplication. The ALI method therefore represents a
different concept from the Ng or orthomin acceleration. The free
parameter in these acceleration methods is the number of previ-
ously calculated source functions. Here we use three residuals
for the Ng method and two conjugate vectors for the orthomin
method.

Finally, we test the multi-grid method as first introduced to
radiative transfer problems by Steiner (1991). Again we will not
go into the details here, as they can all be found in depth in his
paper, and as there exists a vast literature on this subject (e.g.
Hackbusch 1985), but we will describe the general idea of this
method. When one has some approximation to a linear equation
on a grid of a certain coarseness, then this approximation will
have deviations from the exact solution on this grid. There will
be variations over the scale of the separation of the grid points
(short-period errors) and variations over the entire mesh (long-
period errors). Acceleration methods that try to minimize the
residual of a linear equation can only reduce the short-period
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errors efficiently, not the long-period errors. The idea of multi-
grid methods is to introduce grids of varying coarseness. On the
coarse grids, the large scale variations of the error can be min-
imized; and on the fine grids, the small-scale variations can be
reduced. To get grid quantities from fine grids to coarser grids,
one applies a restriction, which we do here by averaging the
quantities. The reverse process from the coarse grid to the fine
grid is called the prolongation, for which we use linear interpo-
lation. On the coarsest grid one solves the so-called coarse grid
equation, which has the same structure as Eq. (7) for the linear
A-operator. To do this we make four steps of the ALI method
with a local operator. There exists a vast number of different
algorithms on how best to combine the use of grids of varying
coarseness. We adopt here the algorithm as described by Steiner
(1991).

4. Solution of the NLTE radiative transfer problem on the
MP-1

4.1. Short characteristics

When the thermalization parameter is much smaller than one,
the source function depends strongly on the radiation field, and
we have to use Egs. (7) or (8) to get the source function by itera-
tion. After each step we need to calculate the specific intensities
for all direction vectors m and frequencies v on all the grid
points. As was pointed out by Castor et al. (1991), we poten-
tially need a very large number N, of vectors n for 3D cases to
adequately resolve the integrand of Eq. (5). Additionally, a large
number N, of frequency points can be required when veloci-
ties become important due to the Doppler shift (Adam 1990).
Therefore, the calculation of the mean intensity will be the most
time-consuming part of 3D radiative transfer calculations, and
we need a fast numerical method to get the specific intensities
on the grid points. If one works on a SIMD machine, one must
have a numerical method that uses the PE grid optimally, i.e.,
most or all processors are active at any given time. This implies
that all the information needed by any processor is located on
or near to that processor. Otherwise, communication may take
up an unreasonable amount of time in comparison to actual
numerical calculations. But the radiation field is intrinsically a
non-local quantity through the radiative transfer equation, and
therefore the problem of solving this equation is not ideally
suited for parallel machines. In the following, we describe a
method with which the transfer equation can nevertheless be
solved efficiently on a SIMD machine.

A fast method to obtain the specific intensities on a carte-
sian grid are the short characteristics as described by Kunasz
& Auer (1988) for the two-dimensional case, but the concept
easily generalizes to three dimensions. In Fig. 1 we show one
z-y layer of a 3D cartesian grid and the short characteristic for
point p. This is simply the characteristic of the transfer equa-
tion in this cell of the grid. If 7 is the optical depth along this
characteristic, then the specific intensity I, at the point p is

I = Iy exp(—7) + /T dr'S(™")exp(t! — 1) (11)
0
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Fig. 1. z-y layer of the 3D cartesian grid showing a short characteristic
for point p

where Iy is the specific intensity at the point p’, from which
the short characteristic starts. In order to calculate the integral,
one has to decide on the way to interpolate the source function
along the short characteristic. We choose linear interpolation
here. Furthermore, we have to get I,y by interpolating the spe-
cific intensities from neighboring points. In the simplest case of
linear interpolation, these are in Fig. 1 the points k, 1, A and p.
Because these intensities have to be known first before Iy can
be calculated, we have to go through the grid cell by cell in order
to get the intensities at the grid points. It is hereby assumed, that
the radiation coming into the grid is known, i.e., that we have
Dirichlet boundary conditions.

When one works on the MP-1 with its two-dimensional PE
grid, a useful way of storing the data of the cartesian grid with
its N x Ny x N, points is to map the z-y axis of the input
grid onto the PE grid and to identify the z axis with the memory
of the PEs. Then, ideally, all the specific intensities of one z-
y layer should be calculated in one step, and in the following
we will investigate whether this is possible. First we have to
calculate the integral of Eq. (11) at every point of a z-y layer.
As all the data needed to calculate the integral at some point
are stored on or nearby the processor that corresponds to that
point, we can indeed calculate this integral simultaneously at
every point of the z-y layer. Necessary data transfer can be
done using the X-Net and is therefore fast. Now we have to get
the specific intensity at the start of every short characteristic.
But as we pointed out above, this leads to a stepping through
the input grid, and essentially only one processor is active at
a time. To get a more optimal use of the PEs, we require the
points of the cartesian input grid to be equidistant in the = and
y dimension (the total dimensions of the x and y axis still do
not need to be identical). Then all short characteristics in one
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z-y layer start from the same side. Therefore, the geometrical
data needed to characterize them scale as N,, x N, instead of
as N X Nz x Ny x N,. Furthermore, in the case that the short
characteristics in one z-y layer start from the z-y layer below,
where the specific intensities have already been calculated, we
can get the specific intensities in the current z-y layer in one
step. If the short characteristics start from the z-z side or the
y-z side, we need to sweep through the z-y layer in N, — 1 or
N, — 1 steps, and N, or N, PEs respectively are active at a time.

As we saw in the previous paragraph, we do not have an
optimal use of the PE grid when we have to sweep through the
z-y layer to get the specific intensities at the grid points. We can
get around this problem by viewing the intensities in one z-y
layer as the solution to a system of linear equations. The specific
intensity at the point p can be written as a linear combination
of the weighted specific intensities at the points k, 1, A and p
plus a constant which corresponds to the integral of Eq. (11).
As the intensities at the points A and y are already known, we
can simply write I, as a linear combination of I; and I; and
a constant, which contains now the integral and the weighted
intensities from the neighboring z-y layer. This rewriting can be
done for every point of the current z-y layer. If we use a higher
order to interpolate intensities, we simply get more complicated
linear equations for the grid points. Overall we can write these
linear relations as

AI =1, 12)

where I is a constant vector, and I contains the specific inten-
sities. This vector is unknown prior to the solution of this linear
equation except for the components that correspond to points on
the boundary in the case of Dirichlet boundary conditions. For
the above matrix we have A =1 — W, where W is the matrix
containing as its elements the weights, which also include the
factor exp(—7), and these elements are therefore much smaller
than one at large optical depths between grid points. It is ob-
vious that the diagonal of W is zero and that all elements of
W are at most one and not negative. Furthermore, there always
exists a way to number the grid points such that W becomes a
lower triangular matrix, and the solution to the above algebraic
system can be obtained by forward substitution. But we can also
solve this equation iteratively by writing

I'=WI'+ I, (13)

where 4 counts the iterations. Using the Jacobi iteration instead
of this simple iteration scheme does not make a difference, as
the diagonal of A is the unity matrix. The advantage on a SIMD
machine is that we can have N; x N, active processors instead
of only N, or N, when sweeping through the grid. Furthermore,
because of the special form of W as a lower triangular matrix,
we know that we get the exact solution after N; — 1 or Ny, — 1
iterations. Even further, we can drop the requirement of having
equidistant spacing in the = and y direction and still have the ex-
act solution in max(N, N, ) — 1 iterations, as it takes only that
many steps to transfer the information from any point on the
boundary to any grid point that can be influenced by the condi-
tions at the boundary point. However, more memory space and
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Fig. 2. Number of steps needed for convergence to get specific inten-
sities in one z-y layer for Dirichlet (solid) and periodic boundary con-
ditions (dotted) as a function of the optical depth between grid points
for different angles 6. From top to bottom 6 = 0°, 5°, 15°, 25°, 35°

more arithmetic calculations are then needed, and therefore we
keep the grid points equidistant in = and y. But the main ad-
vantage of using this iteration is the possibility that much fewer
steps are required to obtain sufficient accuracy when the ele-
ments of W are small. This is the case when the optical depth
between grid points is large because of the factor exp(—7). The
vector n also influences the elements of W through the weights
of the interpolation. But most important is the dependence on
the angle 6 between n and the z-y layer. By comparing the in-
tensities obtained by sweeping and by iteration, we find that the
iteration has converged when (I'*' — I')/I"*! < 10~¢. Figure
2 shows the required steps until convergence as a function of
optical depth A7 between neighboring grid points for differ-
ent angles 6. The z-component of n is zero, and an isotropic
grid with N; = N, = 64 points is used. The source function is
set to one everywhere. As expected, the convergence is fastest
for large 6. For angles larger than ~ 10° the number of itera-
tions is less than max(N,,N,) — 1. Furthermore, the number
of iterations decreases strongly when the optical depth between
neighboring points approaches one, and for depths larger than
four we can calculate the specific intensities in a z-y layer in
one step instead of in N or Ny, steps.

This iterative solution turns out to be even more useful when
we have periodic boundary conditions in 2 and y. In this case, the
specific intensities at the side = = T, are equal to the specific
intensities at the side £ = Zy,x. The same is the case for the y-
axis, and there are Dirichlet boundary conditions only for rays
coming from the top or the bottom of the grid. Such bound-
ary conditions can be important when investigating radiative
transfer in stellar atmospheres with inhomogeneities through
convection (Nordlund 1991; Steffen 1991) or magnetic fields
(Kalkofen et al. 1989). In 2D calculations, in which there are
periodic boundary conditions only along one axis, it is possible
to calculate the specific intensity at the boundary analytically

H.M. Vith: Three-dimensional radiative transfer on a massively parallel computer

when using the short characteristic method (Steiner 1990). How-
ever, in the 3D case we have for every z-y layer N, + N,, — 1
unknown specific intensities at the boundary. We can express
these intensities by an algebraic equation similar to Eq. (12),
but with a lower dimension as we have N + Ny — 1 fewer in-
dependent intensities. It follows that the matrix A is no longer
triangular and the equation cannot be solved by forward substi-
tution. Therefore, when we solve it iteratively, we cannot expect
to find the correct solution after at most max(N, Ny) — 1 steps,
as in the case with Dirichlet boundary conditions. On a SIMD
machine one can solve this problem iteratively using again Eq.
(13) and resetting the periodic boundary conditions after each
iteration. As in the case with Dirichlet boundary conditions, we
show in Fig. 2 the number of steps required to achieve conver-
gence for different angles 6 as a function of the optical depth
between neighboring grid points. The number of required iter-
ations diverges for § — 0 and A7 — 0. This is not surprising,
as there is no matter and therefore no radiation along the line
of sight in this case, but the source function is set to one never-
theless. In order to achieve convergence in less than 128 steps
on this grid, the angle § must be greater than 5°. In a realistic
application one can generally fulfill such a restriction.

We now have to discuss how we construct the approximation
to the A-matrix for the ALI method. This is done equivalently
to Kunasz & Olson (1988). When we want to construct the
diagonal element of A at point p for example (see Fig. 1), we
set the source functions to zero at all gridpoints except at the
point p, where it is set to one. If we use only linear interpolation
for the source function, the intensity at point p’ is zero, and we
get the exact element Ayp by only calculating the intergral of
Eq. (11). Therefore, we can calculate the diagonal of A for all
points in one z-y layer simultaneously. However, when we want
to construct for example Ay, we have to set the source function
to one at point k and zero at all others. Then the intensity I
is not zero. In order to use the processors optimally, we will
set Iy to zero. Therefore, we underestimate the values of the
off-diagonal elements. But we can expect this error to be small,
especially in the optically thick areas, where the ALI method is
most useful.

Finally we have to address the problem of when the iterative
scheme has converged to a solution and with what approxima-
tion to best start the iteration. As was shown by Olson et al.
(1986) and pointed out by Auer (1991) as well, an upper bound
of the convergence rate of the classical A-iteration is given by
1 — e. Therefore, the solution has converged when AS/S <« €
where AS is the difference between two source functions ob-
tained by a A-iteration.

To get a reasonably good guess for the initial source func-
tion, we have to estimate the mean intensity. We can say that
J = (1 — p)S where p, is the escape probability of photons.
This probability is given by (Mihalas, 1978)
Pe = (1/47) / dvdQ exp(t,(n)) (14)
when the effects of scattering are ignored. The optical depth
T,(n) can be calculated using short characteristics.
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4.2. Timing

Because the calculations are done simultaneously on many pro-
cessors, one can expect a significantly different scaling for this
code than when the same calculations are done on a conven-
tional scalar or vector machine. This is indeed the case. While
the timing on a conventional scalar machine scales as the num-
ber of grid points N; x N, x N, the calculation on a SIMD
machine scales as N, when the processors are used optimally
(at least when numerical methods comparable to ours are used).
From this we can see the potential power of parallel machines,
as we can increase the number of grid points in  and y arbitrar-
ily without increasing the computing time, as long as there are
sufficient processors and as long as the processors are used opti-
mally. We therefore have to discuss the timing of the numerical
methods that we use here in some depth, in order to compare the
efficiency of performing the calculation on this SIMD machine
with the efficiency when done on a conventional computer. In
the following, we will assume that the number of points on the
z and y axis of the input grid is at most the number of PEs of
the = and y axis of the PE grid. If this is not the case, then the
calculations have to be repeated for all the virtual layers, which
we described in Sect. 2.

The most time-consuming part of getting the source function
in the case of NLTE is the computation of the mean intensity,
because it consists of solving transfer equation for many angles
and frequencies, and it has to be repeated for every iteration.
We therefore discuss this first. The total timing for it using short
characteristics on the MP-1 scales linearly with N, and N,,. We
can obtain the timing for the calculation of the specific intensi-
ties for a given m and v in the following way. We first have to
calculate the integral of Eq. (11), for which we need A(N,-1)
seconds, where the constant is A ~ 1.0 ms. To calculate the
final specific intensities by sweeping one either needs B(N,-
1) seconds, if all short characteristics start at a z-y layer, or
B'(Ny-1)(N,-1), if they start from a z-z layer, or B'(N-1)(N,-
1) seconds, if they start from a y-z layer. For the constant B
we obtain B =~ B’ = 0.25 ms (for periodic boundary condi-
tions B’ & 0.45 ms). Of course it is also possible that the short
characteristics start from different sides in different z-y layers,
if the grid is not equidistant along the z-axis. But we are inter-
ested here in how long a calculation takes on average, and we
therefore assume that we have many different viewing directions
and a grid with equidistant spacing in all dimensions. Then one
obtains for the time needed to calculate the mean intensity
T =N,N,

{A+ % [B+B(N, — 1) + BN, — 1)] }(Nz -D. 15

To simplify the discussion we will assume from now on that we
have a grid of N points in each direction with N>> 1. Table 1
lists how the computing time scales for different tasks. For large
N the time scales as N? for the sweeps. When calculating the
specific intensities iteratively, the timing depends on the aver-
age iteration steps N necessary to get convergence. As discussed
before, this is at most N in the case of Dirichlet boundary con-
ditions, while it can be larger for periodic boundary conditions.

325

Table 1. Scaling of the computing time for the different calculations
on an isotropic cartesian grid of N® grid points. The constants are
A ~ 1.0 ms and B = 0.25 ms. For details see text

Calculation Computing time

Mean intensity by sweeping = N,Np{ AN + iBN*}
~ N,Np 2 BN?

Mean intensity by iteration ~ =N,N,{A+ 2BN}N

ALI, Ng, orthomin x N
Multi-grid method: Tp «c N> =2.5Ty  for n=2
=2.5T for n=3
=2.5T) for n=4
Ty xN* =3.0T) for n=2
=325Ty for n=3
=3.375Ty for n=4
To x N =4.0Tp for n=2
=55Tp for n=3
=7.0Ty for n=4

However, in the most optimal case N = 1, and the computing
time scales as N.

After we have calculated the mean intensity, we have to get
the source function iteratively. To accelerate the convergence,
we use ALI and/or Ng or the orthomin acceleration. The com-
puting times for all these methods do not depend on N,, and N,,
and scale simply as N. Only in the case of ALI with a non-local
operator can the acceleration methods become important for the
overall execution time. For one iteration step of Eq. (10) we need
for a 643 grid 0.15 s with Dirichlet boundary conditions, while
it takes 0.45 s in the case of periodic boundary conditions. How-
ever, when we use multi-grid methods, where one uses different
numbers n of grids, the calculation of the computing time is
more difficult, as one step of the multi-grid method essentially
requires the repeated computation of the mean intensity on dif-
ferent grids. The time for one iteration step can therefore be
written as alp, where Tj is the time needed to calculate the
mean intensity on a cartesian grid with N grid points. As can
be seen from Table 1, the factor a depends on how Tj scales
with N. As a is always larger than one, the convergence rate for
a problem using multi-grid methods must be larger by a fac-
tor ¢ compared to that of some other acceleration method, or
this other acceleration method is faster in total computing time.
Clearly, multi-grid methods are of greater advantage on a scalar
computer than on an optimally used SIMD machine. To de-
cide whether the multi-grid methods have any advantages over
the Ng and orthomin acceleration, we ultimately have to com-
pare their actual performance when applied to radiative transfer
problems.

5. Discussion
5.1. Dirichlet boundary conditions

In the previous section, we have described how to calculate the
mean intensity, and how to find the source function by iterative
methods. In order to investigate the convergence properties, we
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Fig. 3. Solution (solid) and initial guess (dash dotted) for the source
function, diagonal of the A-matrix (dotted) and optical depth 7 (dashed)

assume the ‘grey’ line here, i.e., we only consider one frequency.
The 3D cartesian grid we choose has 57 points along each axis
and unity spacing between grid points along mesh lines. We
use 26 viewing directions. The Planck function is set to one
everywhere, and the thermalization parameter is setto e = 1073,
which represents an intermediate value. There is no incoming
radiation. The opacity we use is x(z,y,2) = 10772, and we
interpolate it linearly within the grid cells. This choice of model
has the advantage that it contains both optically thin and thick
regions. The optical depth along a ray parallel to the z axis is
shown in Fig. 3 as a function of the z coordinate. As one can
see, the optical depth increases from zero to about 5 10°. Finally
we want to point out that we can compare our results with the
plane parallel calculations of Auer (1991) because Y is constant
in each z-y layer. The two source functions must be identical in
the optically thick regions. Only in the optically thin regions do
3D effects become important, and the source function is smaller
in the 3D case because of the increased escape probability.

As we described above, one can get an estimate of the source
function by calculating escape probabilities using Eq. (14). This
estimated source function is shown in Fig. 3. This figure (and
unless stated otherwise all following figures) shows the source
function along the middle axis of the grid parallel to the 2 axis. It
also shows the ‘correct’ source function S, which was obtained
by making many iterations. One can see that the escape prob-
ability formulation gives a good approximation to the source
function in the effectively optically thick regions where e > 1,
which causes the photons to be thermalized and the source func-
tion to be close to the Planck function. On the other hand, it
differs very much from the correct source function in the other
regions and only reflects the qualitative behavior of it, as this
approximation does not take into account the effects of scatter-
ing. But in the following we will always use €B as an initial
guess for the source function, as we want to demonstrate the
convergence behavior of different models, and this value is a
lower limit for the source function.

The basic properties of the classical A-iteration are shown
by Fig. 4a. The source function is still constant at large optical
depths, while at small optical depths the convergence has obvi-
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Fig. 4a—c. Convergence of a the classical A-iteration, b ALI with local
A*, and ¢ ALI with non-local A*. The solution is shown by dashed line

ously slowed down very much, even though it is still far away
from the solution. This can be understood in the following way
(Mihalas 1978). The mean free path of photons is about one op-
tical depth. As e is the probability of thermalization of photons,
they travel by random walk a distance of ~'/2 before they are
thermalized (also called the thermalization length). Therefore,
the source function will only become the Planck function at a
depth of €~!/2. As it takes that many steps before information
about the boundary propagates into the interior, the A-iteration
requires e~ '/2 steps before it approaches the solution. If there
are effectively optically thick regions, one therefore needs to
find a different way to obtain the solution.

The solution in the regions where the photons are thermal-
ized can be obtained quickly using the ALI method, which is
demonstrated by Fig. 4b when using the diagonal of the A-
matrix, i.e. a local operator, as an approximation. The diagonal
of the A-matrix for points along the z axis is shown in Fig. 3. At
large depths the A-matrix is almost a diagonal matrix. There-
fore, we get the final solution there after only a few steps of ALL
However, the ALI method using a diagonal matrix does not give
a sufficiently good convergence in the effectively optically thin
regions, where the photons are not thermalized. As astrophys-
ically interesting cases will normally contain optically thin re-
gions, we will not achieve sufficiently fast overall convergence.
This is illustrated in Fig. 5, which shows the maximum relative
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error |S* — S;|/S. of the source function after each iteration
step (the maximum relative error for the classical A iteration is
close to one). A way to improve the convergence is by using a
better approximation to the A-matrix. In Fig. 4c we show the
convergence when we include the 26 off-diagonal elements in
A* which correspond to nearest neighbors, and use Eq. (10) as
the iterative scheme to perform one step of ALIL As we can see,
the convergence is significantly faster with this non-local oper-
ator than when we only use a local operator. In the areas where
photons are thermalized, we get the solution after only one step.
In the effectively optically thin regions the convergence is also
accelerated in comparison to the local operator. But to decide
on the effectiveness of this iteration scheme, we have to look at
how many iterations of Eq. (10) are needed for one ALI step.
Here we limit the maximal number of iterations to at most 128.
Then for the first step of ALI, we need this maximal number
(though after 20 iterations we already have convergence in the
effectively optically thick regions). But for the next step it takes
90 steps to get a relative change smaller than 10~* between
successive source functions as calculated by Eq. (10). In the
following, the number of required steps decreases, and after 10
ALI steps we need 43 iterations, which is better than perform-
ing a matrix inversion for every ALI step. However, the major
disadvantage of this method is the relatively large size of the
array required to store the 26 off-diagonal elements. In many
cases (e.g. multiple lines) this will exceed the memory space.

The convergence can be significantly accelerated by using
the Ng or the orthomin methods of acceleration. Figure 6a shows
the convergence of the Ng acceleration, while Fig. 6b shows the
convergence of the orthomin acceleration. In both figures we
have combined the acceleration methods with ALI using a local
operator. Obviously, we get a significantly faster convergence
than when only using ALI with a local operator. When com-
paring these figures one has to keep in mind that one step of
the orthomin method essentially requires the calculation of two
formal solutions. Then it becomes clear that these two methods
are about equally fast in this example. But as is clearly seen
in Fig. 5 (and it was noted by Auer 1991 as well), the conver-
gence is much smoother using the orthomin acceleration, and
it is therefore preferable. The orthomin method is also tested in
combination with ALI using a non-local operator, and Fig. 6¢
shows the result. This clearly gives the best convergence, but
the major drawback is again the large memory space required
to store the non-local operator. The number of iterations for one
ALI step is as follows. For the first step we again need the max-
imal number of allowed steps. After that the number of steps
rapidly decreases, with 14 iterations for the 10th orthomin step
and one iteration for the 16th orthomin step.

Finally, we show the convergence behavior when using
multi-grid methods. Figures 7a, b and c show the convergence
behavior when n = 2, 3, and 4, respectively. It can be seen di-
rectly that using only two grids does not give a satisfactory con-
vergence. There is little difference between the n =3 and n = 4
case. But as one step using four grids requires more time than
one step using three grids (see Table 1), the three grid method
is preferable. Overall, these two multi-grid methods are faster
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Fig. 5. Maximum relative error of the source function after each itera-
tion step. From top to bottom (at N = 20): Classical A-iteration, ALI
with local A*, multi-grid method with n=2, Ng acceleration, ALI with
non-local A*, orthomin with local A*, orthomin with non-local A*,
multi-grid method with n=3, multi-grid method with n=4. The con-
vergence using orthomin with a non-local A* slows down for N > 12
because the correction to the source function is smaller than its machine
accuracy

than any other method. But because the time needed for one
step of the multi-grid method is longer than the time required
for one step of orthomin, we have to compare the number of
steps needed to achieve a certain convergence. Looking at Fig.
5 and using the numbers from Table 1, we see that the multi-grid
method is fastest when the timing scales as N? (when we have
to sweep through the z-y layers to get the specific intensities) ,
but not if it scales as N (when we only need one iteration to get
the specific intensities in one z-y layer). Then the orthogonal
minimization using only a local operator still converges faster.
Even though there are viewing directions for which the itera-
tion to get the specific intensities requires the maximal number
of steps, on average we only need N = 6 iterations to get the
specific intensities for some viewing direction. Therefore, the
timing scales closely to N, and the multi-grid methods are of no
advantage in our example.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994A%26A...284..319V&amp;db_key=AST

FTI992A&A. © 72847 “310V

s/B

LA R ALLL S S R AR

s/B

1.00

T T
T

0.10¢

S/B

0.01

0 10 20 30 40 50

Fig. 6a—c. Convergence of a Ng acceleration, b orthomin with local A*,
and ¢ orthomin with non-local A*. The solution is shown by dashed
line

5.2. Periodic boundary conditions

To illustrate the ability of our program to handle radiative trans-
fer calculations with periodic boundary conditions, we adapt
the two-dimensional model of a stellar atmosphere by Steiner
(1991) to three dimensions. In Fig. 8 we show the model. The
mesh has 49 x 49 x 25 points and the length of the mesh in
and y is two, while it is one in z (in our calculations we do not
take advantage of any symmetries). We have periodic boundary
conditions for the radiation in z and y. There is no radiation
entering into the computational domain from the top, but we
have isotropic radiation entering from the bottom. The opacity
outside the dashed cube is denoted with x.. Inside the cube the
opacity is reduced by a factor 5, and it is denoted with ;. Here
we use X, = 24. Physically, this is a simplified model of a mag-
netic flux tube in an otherwise normal stellar atmosphere. In this
tube the density and therefore the opacity are reduced.

For the radiative transfer calculations we assume radiative
equilibrium and again the ‘grey’ case. From this it follows that
the source function is equal to the mean intensity, i.e.

S=J. (16)
The mean intensity J can be written as
J=AS+G 17)
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Fig. 7a—c. Convergence of multi-grid methods with a n=2, b n=3, and
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Fig. 8. Part of grey 3D atmosphere with periodic boundary conditions
along z and y. Isotropic radiation is entering from the bottom. The
length of the cube along z and y is 2, while it is unity along z. The
opacity within the dashed cube is x; = 4.8, while it is y. = 24 outside.
A computational mesh of 49 x 49 x 25 mesh points is used. The contour
lines of the source function in the z-z plane are shown

where A is the usual A-operator, and G is the mean intensity due
to the incident radiation. By combining the above equations, we
get for the source function

S=AS+G. (18)
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We show lines of constant S in the -z plane in Fig. 8. Under the
additional assumption of LTE, we have for the source function
S=B=ocT* /=, where T is the temperature. Therefore, the
contour lines in Fig. 8 are also isotherms. As can be seen in
the figure, the reduced opacity in the flux tube causes a cooling
of the matter at the bottom and a heating at the top of the tube
relative to the matter outside the flux tube (Kalkofen et al. 1989).
This is qualitatively the same result as that of the 2D calculation
of Steiner (1991).

In order to get the specific intensities in the z-y layers within
a reasonable number of steps, we rotate the set of vectors n so
that no vector has a corresponding angle 6 smaller than 8.5°.
Then we need at most 25 steps to get the specific intensities of
any z-y layer in our example, but on average we have N = 12.
‘We summarize the convergence properties of different iteration
schemes in Fig. 9 similarly to Fig. 5 for the Dirichlet boundary
conditions. As an initial guess we have set the source function
everywhere equal to the mean intensity at the bottom, where the
radiation is approximately isotropic and the incoming radiation
is given. As in the previous example, convergence is achieved in
the fewest steps with the multi-grid method using three and four
grids. But because of the relatively small number N here, the
multi-grid method is of no advantage. Overall it is the orthomin
method with a non-local operator which converges fastest. Us-
ing Eq. (10), it only takes nine iterations for the first step the
same accuracy as in the previous example. Again this number
decreases rapidly. However, if memory space is insufficient, the
orthomin method with a local operator works best.

6. Conclusion

We have developed a computer code to solve radiative trans-
fer problems in three dimensions on the MasPar MP-1, which
is a SIMD machine with 8192 processors. We adapt the short
characteristic method (Kunasz & Auer 1988) for a 3D carte-
sian grid in order to solve the radiative transfer equation. To
parallelize the computation, we map the cartesian grid onto the
two-dimensional grid of the processors. Therefore, we are suc-
cessful in parallelizing the radiative transfer calculations if the
scaling of the computing time is independent of the number of
grid points in the x and y axis, and if it is only linearly dependent
on the number of grid points in the z axis. This has to be seen in
comparison to calculations on conventional scalar or vector ma-
chines, where the computing time scales as N* when there are N
grid points in each dimension. In contrast, it only scales as N on
this SIMD machine if the problem is parallelized completely.
Because obtaining the solution of the radiative transfer equation
is a highly non-local problem, it is not possible to achieve com-
plete parallelization. However, in the case of Dirichlet boundary
conditions, we can reduce the scaling of the computing time to
N2 in the worst case, and in a wide range of problems it reduces
to N x N where N is much smaller than N and close to one.
Even in the case of periodic boundary conditions, where poten-
tially N > N, one has in praxis N < N. A SIMD machine
is therefore very suitable for studying inhomogeneities in stel-
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Fig.9. Maximum relative error of the source function after each it-
eration step. From top to bottom (at N = 20): classical A-iteration,
ALI with local A*, ALI with non-local A*, multi-grid method with
n=2, Ng acceleration, orthomin with local A*, orthomin with non-
local A*, multi-grid method with n=3, multi-grid method with n=4.
The orthomin acceleration overshoots slightly during the convergence.
Therefore, the maximum relative error occurs at different points after
different iteration steps, and it is not as smooth as other methods

lar atmospheres, where periodic boundary conditions become
important.

In order to achieve the final source function in the NLTE
case, we have to make iterations. We have tested various meth-
ods to accelerate the convergence. Most of these can be com-
pletely parallelized. Only the multi-grid method turns out not to
be well suited for SIMD machines, because the timing depends
only weakly on N in comparison to a conventional computer,
and because many processors will be inactive during the compu-
tations. Overall, the orthomin acceleration in combination with
the ALI method gives the smoothest convergence. As an approx-
imate A-operator we test a purely diagonal matrix and a matrix
constructed by including 26 nearest neighbors. As the inver-
sion of this latter matrix is difficult, we solve the corresponding
equation using the Jacobi iteration. While the diagonal matrix
already gives a good solution in the effectively optically thick
areas, it does not accelerate the convergence sufficiently fast in
the optically thin areas, as expected. There the operator’s includ-
ing the 26 nearest neighbors gives a significant improvement.
But because of the large memory space required to store this
operator, it may not always be possible to use it.
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Overall we find that it is possible to efficiently solve NLTE
radiative transfer problems on a SIMD machine. We were care-
ful to write the program without overly specializing for the par-
ticular SIMD machine that we have available. As the entire code
is written in a computer language that is close to the new FOR-
TRAN 90 standard, we will even be able to adapt the code easily
to conventional machines once this new standard is generally
available. Furthermore, it should not be difficult to convert this
program onto a different kind of SIMD machine, as we do not
explicitly use specific hardware tools of the MasPar MP-1. The
only way we have specialized the code for this particular ma-
chine is by assuming a 2D grid of processors, but this assumption
should not prove to be very restrictive when using other SIMD
machines.
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