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Abstract. We have determined the two lowest frequency radial
oscillation modes constructed for several equations of state. The
results for neutron stars differ from those of Glass & Lindblom
(1983). We find that the central density where w3 =0 agrees in our
calculations with that where the star reaches its maximal mass, as
expected, but contrary to their calculations. The oscillation
frequencies of strange stars have qualitatively a different depen-
dence on the central density compared with the case of neutron
stars, as the periods of all modes go to zero when the central
density of the strange star approaches its smallest possible value.
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1. Introduction

The possibility that radial oscillations of neutron stars give rise to
the oscillations observed within radio subpulses of pulsars was
proposed by Boriakoff (1976). While this interpretation has been
doubted by some (Cordes 1976), others have not excluded the
possibility that radial oscillations might be detectable (van Horn
1980). More recently, periodicities have been observed in X-ray
bursts (Sadeh et al. 1982), which has raised considerable interest
in radial oscillations (Glass & Lindblom 1983, hereafter GL;
Muslimov & Tsygan 1986; Marti et al. 1988) and other types of
oscillations of neutron stars (Lindblom & Detweiler 1983;
McDermott et al. 1988). Then Kristian et al. (1989) reported the
discovery of the neutron star remnant of SN 1987 A (Arnett et al.
1989), which showed optical oscillations with a period of 0.5 ms.
This was interpreted by Wang et al. (1989) as radial oscillations of
the neutron star. But the observations were found to be wrong
and the remnant of this supernova remains undiscovered. Never-
theless, it is possible that if the neutron star in SN 1987 A is
discovered, it could show pulsations which may be due to radial
oscillations. Hence studies of radial oscillations of neutron stars
may be valuable to understanding future observations.

Studies of radial oscillations of neutron stars have been
performed by a number of authors with equations of state (EOS)
at zero temperature (e.g. Harrison et al. 1965; Chanmugam 1977,
Glass & Lindblom 1983, GL) and more recently at finite temper-
ature (Marti et al. 1988). Here, we have calculated radial oscil-
lations using new EOS at zero temperature, which include the
effects of heavy baryons, hyperons, and pions (Glendenning
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1985). But we also computed the oscillation frequencies using
EOS similar to those of GL in order to check our results.

We also calculated the radial oscillation frequencies of strange .
stars, whose existence was proposed by Witten (1984). Further
interest in the study of the properties of strange stars has been
stimulated by Haensel et al. (1991), who proposed that gamma
ray bursts originate as a result of collisions between strange stars
at cosmological distances. Even though radial oscillations of
strange stars seem to be damped rapidly (Haensel et al. 1989), one
cannot completely exclude the possibility of oscillations of
strange stars during short time scales. Furthermore, fully rela-
tivistic calculations of the oscillation frequencies of strange stars
have not been performed previously.

2. Equations of state

The characteristics of the EOS at densities higher than nuclear
densities together with their abbreviations as used in this study
are shown in Table 1. All are for catalyzed matter at zero
temperature. In the case of neutron stars we used the EOS
described by Canuto (1974) and composed of those due to
Feynman et al. (1949), Baym et al. (1971a, b) for densities below
nuclear densities. The fitting points to the EOS above nuclear
densities are given in Table 1. The EOS of model V of Bethe &
Johnson (1974; hereafter BJ) and Serot (1979; hereafter S) were
already used by GL and the same fitting points were used here to
facilitate comparison. Two EOS of Glendenning (1985) were also
used, one with pions (Gl1, his case 1) and the other without (G2,
his case 2).

The idealized EOS of strange matter is given by (Witten 1984)

P=(pc*—4B)/3, (1)

where P is the pressure, p the density, c the speed of light, and B is
the bag constant. From this EOS it follows that the density of
strange matter cannot be smaller than p,;,=4B/c>. The rela-
tivistic adiabatic index is defined as

y=(1+pc*/P)(dP/dp)/c? 2
so that for strange matter one gets the analytic expression
y=(4+4B/P)/3. (3)

Two different bag constants were used here, one with
B=60 MeV fm ™3 (S1) and the other with B=70 MeV fm 3 (S2).
Even though the value of the bag constant is not well known,
these two are reasonable estimates (Alcock & Olinto 1988). The
minimal densities p,,;, for these values are given in Table 1.
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Table 1. The EOS at densities higher than nuclear densities as used in this paper

Reference Abb. Constituents Density range
[10** gem ™3]

Bethe & Johnson (1974) BJ Neutrons, A >1.7
Hyperons (model V)

Serot (1979) S Neutrons >1.926

Glendenning (1985) Gl1 p,n, e, u, A, >1.0101
Hyperons, n~ (case 1)

Glendenning (1985) G2 p,n, e, u, A, >1.0101
Hyperons (case 2)

Witten (1984) S1 u, d, s quarks > Pmin ¥4.3
B=60 MeVfm™3

Witten (1984) S2 u, d, s quarks > Pmin T4.7

B=70 MeV fm 3

3. Equations for the radial oscillations

A spherically symmetric system is described by the Schwarzschild
metric

ds?=e"c?2dt? —e*dr? —r?(d®2 +sin? © d®?), )
where r is the radial coordinate, ¢ the time, ® and ® are the angles,
and 4, v are metric functions. The function A may be replaced by
e*=(1-2Gm/rc?)" !, (5)

where G is the gravitational constant and m the mass within the
radius r. The structure of the star when in hydrostatic equilibrium
is described by the Tolman—Oppenheimer—-Volkoff equations
(Tolman 1939; Oppenheimer & Volkoff 1939)

dm 4nr? ©)
—-

dr ¢?

dP (P+e) <Gm +41tG P ) (1 2Gm\™! @
———= —+———Fr - 5

dr c? 2 c? rc?

dv 2 dpP

—=— —, (8)
dr (e+P) dr

where e=pc? is the energy density. The equations governing
radial adiabatic oscillations were first derived by Chandrasekhar
(1964). The time dependence of the harmonic oscillations is
written as exp(iwt). If Ar is the radial displacement, AP the
corresponding Lagrangian perturbation of the pressure, £ =Ar/r
and n=AP/P, one gets (Chanmugam 1977)

¢ 1 n\ dP ¢

d_r’_?(3é+§>_E(P+e)’ ©
w? _ (P+e 4 dp

é{c_zel ( P )r

871G A(P+)+<dP>2 ; }
& ST G ) P(Pe)

P dr
dr P(P+g) c*

dr]_
dr

(10)

where o is the eigenfrequency of the vibration and y is the
relativistic adiabatic index given by Eq. (2). The advantage of

using this system of equations in contrast to others (see GL) is
that one does not need any derivatives of y. In order for d¢/dr to
be finite everywhere the first term on the r.h.s. of Eq. (9) must be
finite as r—0, and hence one requires at the center that

n=—3y. (1

Similarly, for dn/dr to be finite one requires since P—0 and
P/¢—0 at the surface that

—c[(f ZGM>“< R GM) ;
= Re? GM R ’

Here M and R are mass and radius of the star, respectively. As
Egs. (9) and (10) form a system of linear differential equations, one
is free to choose the scaling factor. Here the eigenfunctions are
normalized so that £ =1 at the center. Equations (9) and (10) with
the boundary conditions (11) and (12) form a two point boundary
value problem of the Sturm-Liouville type with w? being the
eigenvalue. For a given star there are therefore different eigen-
values wi<w?<...<w?2<... with n being the number of
nodes (Cox 1980). The n=0 mode is also called the fundamental
mode.

(12)

4. Numerical methods

Equations (6)—(8) for the equilibrium structure of the star were
integrated for a given EOS and a given central density p_ (see
Arnett & Bowers 1977) by using Runge-Kutta integration (Press
et al. 1989). Thus p, P and v were obtained as functions of the
radius r.

Equations (9) and (10) for the radial oscillations with the
boundary conditions given by Egs. (11) and (12) were solved by a
shooting method using Runge-Kutta integration (Press et al.
1989). One needs in addition the adiabatic index y and the metric
function A, the latter being given by Eq.(5). We calculated y
directly from the EOS for densities above nuclear densities as in
GL by using a simple difference formula for the derivative in
Eq.(2). In the regions below nuclear densities we used the
tabulated values of y whenever given and obtained the values for
intermediate densities by interpolation. In the case of strange
matter, the adiabatic index was given analytically by Eq. (3). The
singularity at the center was overcome by a Taylor expansion.
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The eigenvalue w? was determined to an accuracy of one part
in 10° for a given input of data points for the adiabatic index.
However, as y has to be calculated by a difference equation,
except in the case of strange matter, the accuracy of w? is
somewhat less. By changing the number of input points, it was
estimated that w? is accurate to one part in 10%,

5. Results and discussion

The mass versus central density relations for all EOS used in this
work are shown in Fig. 1. The relations differ from those of GL,
Haensel et al. (1986), and Alcock et al. (1986) by less than 1%.
Glendenning (1985) used a different EOS for densities below
nuclear densities, but the difference in our calculations is less than
1% as well, since the mass and radius of a neutron star are mainly
determined by the high density region.

The period T=2n/w versus the central density relations for
stable stars for the fundamental (n=0) and first excited (n=1)
mode are shown in the Figs. 2 and 3. The periods, masses, and
radii for the BJ and S EOS are given in Table 2 together with
those due to GL. Table 3 shows these values for strange matter
with the S1 EOS. The e-folding time T=1/|w| is given if the star
is unstable in that mode (negative w?).

One can see from Table 2 that the periods for the BJ and S
EOS calculated by us differ from those calculated by GL. The
difference increases with increasing central density. While the
difference is less than 1% at p,=610'*gcm™3 for the BJ
EOS and at p,=410'*gcm™3 for the S EOS, it is 23% at
p.=110'% gem~3 for the S EOS. Moreover, we find w2 <0, for
p.=3.3710'° gcm 3 for the BJ EOS. But GL have a stable star at
0p.=3.98110" gcm ™3 for this EOS. In both our and GL’s
calculations the equilibrium adiabatic index is used. Hence the
central density p .., at which the star reaches its maximal mass,
must be identical with the critical central density p,;,, above
which w3 is negative (Harrison et al. 1965). For the BJ EOS p, ..«
=3.3510" gem ™3, and p,,;, as calculated by our oscillation
program agrees with p ... to better than about 1%. In the case of
strange matter, the EOS and the adiabatic index are given
analytically. Here, p ., =2.059010'% gcm ™3, and its agreement
with p., is better than 0.4%.

A possible reason for the discrepancy between the calculations
of GL and ours can be seen in the systematic difference in the
calculated periods. As we pointed out above, the periods do not
differ much at low central densities, where the redshift of the star
z=(1—2GM/Rc*)~ 2 —1is below z~0.1 and general relativistic
effects are not very important. But there are large differences at
high central densities where zx0.5. It is therefore possible that an
error in some general relativistic term of the pulsation equation of
GL as implemented in their numerical code caused the dis-
crepancy.

At p,~410'* gcm 3 the period for stars with the G1 EOS
increases by about 13% in the fundamental mode compared to
the period of the G2 EOS. This is because pion condensation
occurs in the G1 EOS for p>310'* gecm ™3 (Glendenning 1985)
and causes a drop of the adiabatic index (Shapiro & Teukolsky
1983) with respect to the G2 EOS, which does not contain pions
but is otherwise similar. At p>710'* gcm ™~ the pions disappear
again due to the condensation of other particles (Glendenning
1985). Now the eigenvalue w3 for the fundamental mode becomes
in the case of a homogeneous, nonrelativistic star (Shapiro &
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Fig. 1. Mass in M, vs. central density in gcm ™3 for stars constructed
from different EOS
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Fig. 2. Period in milliseconds of the fundamental mode vs. central
density in gcm ™3 for stars constructed from different EOS
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Fig. 3. Period in milliseconds of the n=1 mode vs. central density in
gem ™3 for stars constructed from different EOS
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Table 2. Periods of radial oscillations. Values in parenthesis are from Lindblom &
Detweiler (1983) for the masses and radii and from Glass & Lindblom (1983) for the periods.

For unstable modes (marked by *) the e-folding time is given

EOS Central Mass Radius Period
density p, [My] [km]
[10'% gecm ™3] n=0 n=1
[10735] [10735]
BJ 3.9810 1.646 9.041 0.1399* 0.1462
(1.645) (9.040) (0.6335) (0.1530)
3.5480 1.652 9.264 0.2450* 0.1447
(1.650) (9.261) (0.5817) (0.1509)
3.3700 1.65290 9.363 0.8355* 0.1441
3.3300 1.65290 9.386 4.5880 0.1439
3.0000 1.650 9.584 1.1436 0.1435
(1.648) (9.598) (0.5412) (0.1483)
2.2390 1.610 10.135 0.6004 0.1498
(1.610) (10.154) (0.4922) (0.1470)
1.7780 1.546 10.440 0.4121 0.1492
(1.547) (10.450) (0.4305) (0.1455)
1.4130 1.422 10.671 0.3388 0.1386
(1.424) (10.678) (0.3556) (0.1420)
1.0000 1.059 11.070 0.3205 0.1494
(1.060) (11.088) (0.3181) (0.1511)
0.8000 0.818 11.280 0.3267 0.1659
(0.820) (11.301) (0.3245) (0.1667)
0.6000 0.548 11.660 0.3590 0.2130
(0.549) (11.697) (0.3617) (0.2042)
S 2.0000 2.563 12.271 0.1789* 0.1988
(2.563) (12.270)
1.5000 2.561 12.825 1.0134 0.1914
(2.561) (12.825)
1.0000 2.370 13.470 0.4825 0.1622
(2.370) (13.472) (0.6123) (0.1704)
0.8000 2.080 13.793 0.4195 0.1569
(2.080) (13.800) (0.4197) (0.1596)
0.4000 0.801 13.335 0.3113 0.1984
(0.801) (13.338) (0.3082) (0.1887)
0.3500 0.567 13.242 0.3277 0.2545

Teukolsky 1983)

w2=4nGp(3y—4)/3. (13)

Most of the matter of a neutron star is at high densities, and the
star can therefore be approximated as being homogeneous
(Arnett & Bowers 1977). From Eq. (13) it follows that the value of
w} scales with 7. Correspondingly, the period of a neutron star
constructed with the G1 EOS increases with respect to a star
constructed with the G2 EOS, when pions start to condense.
From Figs. 2, 3, and Table 3, one notices that the periods for
all modes of the strange stars go to zero when the central density
approaches its smallest possible value p,;,. This can be explained
as follows. When the central density of a strange star is close to
Pmin» the star becomes approximately homogeneous, and further-
more nonrelativistic because of its small mass (Alcock & Olinto
1988), and w3 is therefore approximately given by Eq. (13). But
the adiabatic index of strange matter given by Eq. (3) goes to
infinity, because P—0 everywhere and not only at the surface.

Table 3. Periods of radial oscillations: S1 EOS. For unstable
modes (marked by ) the e-folding time is given

Central Mass Radius  Period
density p, [My] [km]
[10'% gcm ™3] n=0 n=1
[1073s] [1073s]
2.1000 1.963 10.690 0.4499* 0.1667
2.0626 1.9631 10.713 1.4981* 0.1659
2.0551 1.9637 10.707 9.1167 0.1658
1.9000 1.962 10.802 1.3853 0.1631
1.5000 1.929 11.027 0.6570 0.1507
1.0000 1.563 11.143 0.3722 0.1257
0.9000 1.629 11.071 0.3275 0.1178
0.7520 1.399 10.762 0.2599 0.1026
0.7000 1.278 10.537 0.2345 0.09574
0.5000 0.427 7.639 0.1118 0.05253
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Therefore w3—oo and the period T—0 for the fundamental
mode. As the period of a higher mode is always smaller than that
of a lower stable mode, the periods of all modes of strange stars
have to go to zero, when p.—ppin.

The periods in all modes of the strange star with a bag
constant B=70 MeV fm~3 are lower than those of the strange
star with a bag constant of B=60 MeV fm 3. This is essentially a
shift to the right of the graph of the period versus central density
with increasing bag constant, as p,,;, increases with increasing
bag constant.

6. Conclusions

The periods and e-folding times of radial oscillations for neutron
stars and strange stars were calculated. These calculations were
compared to those made by GL for the BJ and S EOS. It was
found that differences occur which increase with increasing
central density. If the equilibrium adiabatic index is used, then the
critical densities above which the star becomes unstable to radial
perturbations, as calculated by the oscillation equations and as
derived from the mass to central density relation, must be the
same (Harrison et al. 1965). This is consistent with our results, but
not with those of GL.

The effect of pion condensation on the period of radial
oscillations was seen in the calculations for the two EOS due to
Glendenning (1985). One contains pion condensation for
p>310'* gcm ™3, which causes a drop of the adiabatic index and
a change in the structure, and ultimately causes a significant
increase of the period in the fundamental mode compared to the
one without pions.

We also show that the periods of radial oscillations of strange
stars behave very differently from those of neutron stars. Instead
of having a smallest possible period for a given mode, the periods
of all modes for strange stars go to zero when the central density
of the strange star approaches its smallest possible value. This
behavior arises because y— oo when P—0, which occurs when the
central density of the strange star is close to its smallest possible
value.
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