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ABSTRACT

Warped H 1 gas layers in the outer regions of spiral galaxies usually display a noticeably twisted struc-
ture. This structure almost certainly arises primarily as a result of differential precession in the H 1 disk
as it settles toward a preferred orientation in an underlying dark halo potential well that is not spher-
ically symmetric. In an attempt to better understand the structure and evolution of these twisted, warped
disk structures, we have adopted the “twist equation” formalism originally developed by Petterson to
study accretion onto compact objects. Utilizing more recent treatments of this formalism, we have gener-
alized the twist equation to allow for the treatment of non-Keplerian disks and from it have derived a
steady state structure of twisted disks that develops from free precession in a nonspherical, logarithmic
halo potential. We have used this steady state solution to produce H 1 maps of five galaxies (M83, NGC
300, NGC 2841, NGC 5033, NGC 5055), which match the general features of the observed maps of these
galaxies quite well. In addition, the model provides an avenue through which the kinematical viscosity of
the H 1 disk and the quadrupole distortion of the dark halo in each galaxy can be quantified. This
generalized equation can also be used to examine the time-evolutionary behavior of warped galaxy disks.

Subject headings: galaxies: kinematics and dynamics — galaxies: structure — radio lines: galaxies

1. INTRODUCTION

In simplest terms, spiral galaxy disks can be described as
geometrically thin, flat, and circular. We understand that
spiral disks are geometrically thin because the gas of which
they are composed is cold (the sound speed of the gas is
much smaller than its circular orbital velocity) and they are
both circular and flat because, being dissipative, the gas is
fairly efficient at minimizing both out-of-the-plane motions
and radial excursions that would lead to departures from
circular orbits.

Describing spiral disks as perfectly circular and flat,
however, is clearly an oversimplification. In addition to the
nonaxisymmetric structures that are obvious in optical
photographs of many spiral disks, 21 cm maps of the pro-
jected velocity fields of spiral disks often reveal isovelocity
contours that are significantly twisted (Rogstad, Lockhart,
& Wright 1974; Reakes & Newton 1978; Rogstad, Crut-
cher, & Chu 1979; Newton 1980a, 1980b; Bosma 1981;
Schwarz 1985). Kinematical tilted-ring models have been
constructed in an effort to explain the presence of such
twists in the velocity maps of H 1 disks. The models indicate
that the outer regions of many normal spiral disks are sig-
nificantly warped out of the principal plane that is defined
by the optically visible, central portion of each galaxy. The
line of nodes that defines the intersection of adjacent rings
of gas in these kinematical models also must usually be
significantly twisted as a function of radius in order to
explain the observed contour maps (for recent reviews, see
Briggs 1990; Bosma 1991; Christodoulou, Tohline, &
Steiman-Cameron 1993, hereafter CTSC).

It is not particularly surprising that many galaxies are
observed to possess extended, rotationally flattened disks
because such structures appear to be fairly ubiquitous in
gravitationally bound, astrophysical systems. (There is
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strong evidence, for example, that rotationally flattened
disks either exist now or have existed in the past around our
Sun, individual planets within our solar system, numerous
protostars, the primary star of many mass-exchanging
binary star systems, and active galactic nuclei) What is
peculiar about the H 1 disks of many galaxies is that the
disks are significantly warped. It is not clear why natural
dissipative processes similar to those that work effectively
to minimize out-of-the-plane motions in stellar or protostel-
lar “accretion” disks are unable to suppress warps in the
gaseous disks of galaxies. As Binney (1992) has concluded,
there still is no generally accepted dynamical model of
spiral galaxies that satisfactorily explains either the origin
or the current structure of warped H 1 disks.

Almost 30 yr ago, Hunter & Toomre (1969) examined
whether normal, infinitesimal bending oscillations might be
exhibited by thin, rotating disks of self-gravitating material,
permitting them to sustain coherent warps for more than a
Hubble time. They concluded that “for any disk whose
density tapers sufficiently gradually to zero near its edge”
(p. 747), the frequency spectrum of such oscillations is at
least partly continuous and, as a result, coherent warps
cannot be sustained. Over the subsequent decade, a number
of other ideas surfaced to explain the persistence of warps in
galaxies, each one taking advantage of the demonstrated
existence of dark matter halos around galaxies. As Toomre
(1983) has found, however, models proposing to use the
halo as an active agent to excite warps in otherwise flat
disks—for example, via the Mathieu instability (Binney
1981) or via a flapping instability (Bertin & Mark
1980)—each present significant difficulties. Toomre (1983)
and Dekel & Shlosman (1983) proposed, instead, that
untwisted steady state warps may be sustained as a result of
steady forcing by a nonspherical, tilted halo. Building on
the early work of Hunter & Toomre (1969) and the idea that
forcing by a nonspherical dark halo can influence the
dynamics of the visible disks of galaxies, Sparke (1986) and
Sparke & Casertano (1988) have shown that a discrete
warping mode can persist if the disk is sufficiently self-
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gravitating and if it is embedded in a nonspherical halo
whose equatorial plane is tilted with respect to the central-
most regions of the disk.

By adopting this model of galaxy warps, the following
evolutionary picture emerges. During the galaxy formation
process, gas that falls into a spheroidal dark matter halo
generally will find that its angular momentum vector is
tipped at some nonzero angle, i, away from the symmetry
axis of the halo. If the gas is cold, it will settle into a rota-
tionally flattened disk that is tilted at the same angle i with
respect to the equatorial plane of the halo. In the central-
most regions of the galaxy, where the self-gravity of the gas
(or, ultimately, the combined gas/star system) dominates
over the gravitational influence of the halo, the gas will be
content to remain in orbits that preserve this original tilt. In
the outermost regions of the galaxy, where the gravitational
field of the halo dominates, however, the gas should settle
into the halo’s equatorial plane. As Toomre (1983) and
Dekel & Shlosman (1983) both sketched in their original
concept papers, there should also be an intermediate region
where the gas will be significantly influenced by the non-
spherical gravitational fields of both the halo and the
central gas (or gas/star) disk.

Through their modeling efforts, Sparke (1986) and
Sparke & Casertano (1988) confirmed this earlier suspicion
that in the intermediate region the gas can reside in a steady
state, “warped disk” structure that provides a smooth
radial transition between the separate “flat disk ” orienta-
tions of the inner and outer regions of the galaxy. Concen-
trating on the dynamics of the centralmost and intermediate
regions—that is, by building models in which there was
effectively no gas in the outermost regions—Sparke &
Casertano (1988) showed that, in steady state, the warped
disk exhibits a straight line of nodes that precesses slowly
and coherently in a direction retrograde to the orbital
motion of the gas. In a time-dependent simulation, further-
more, Hofner & Sparke (1994) showed that settling to this
steady state warped disk structure occurs from the inside
out and is driven not by dissipative processes similar to
those that are thought to drive settling in most stellar or
protostellar accretion disks but rather by “bending waves
[that] carry energy associated with transient disturbances
out toward the disk edge” (p. 481). They also showed that
during an evolution, as the bending waves propagate
outward through the intermediate region of the disk, a
twisted structure can develop and persist until the gas has
had sufficient time to settle into the steady state (constant
line of nodes) configuration. Sparke & Casertano (1988) and
Hofner & Sparke (1994) have demonstrated that, with an
appropriate choice of parameters, this model of disk
warping matches well the observed properties of several
galaxies with warped disks. (See also Kuijken 1991 and
Dubinski & Kuijken 1995.)

As Hofner & Sparke (1994) have pointed out, in galaxies
with extended H 1 disks, “the outermost gas cannot be
expected to form part of a coherent warping mode ” (p. 482).
They did not include normal dissipative forces in their
simulations and therefore were unable to comment on how
such forces might influence the settling process. In this
paper, we examine the disk-settling process from the other
extreme, ignoring the self-gravity of the gas but introducing
an effective kinematical viscosity into the dynamical equa-
tions in order to simulate the effects of dissipative forces.
Hence, our effort is complementary to the work of Hofner

& Sparke (1994) and is most relevant to galaxies with
extended H 1 disks, although there is one galaxy used for
model comparisons (NGC 2841) that is shared by both
works. We adopt the view that warps in extended H 1 disks
that exhibit substantial twists are transient features. Inde-
pendent of precisely what physical process was responsible
for initially placing the gas in an orbit that is inclined to the
halo’s equatorial plane (e.g., gas infall at the time of forma-
tion or a recent tidal encounter with another galaxy), the
twisted structure can be understood as the result of differen-
tial precession in the gaseous disk as it dissipatively settles
toward that “ preferred plane.”

In the past, there has been considerable concern (first
enunciated by Kahn & Woltjer 1959, but reiterated in the
reviews by both Toomre 1983 and Binney 1992) that differ-
ential precession will destroy any warped disk structure on
a timescale that is short compared with a Hubble time and,
therefore, that the mechanism we are examining cannot rea-
sonably be used to explain the persistence of such struc-
tures. In the outermost regions of H 1 disks, however,
precession times are relatively long, and, as was first pointed
out by Tubbs & Sanders (1979), a warped gas layer can
persist for a Hubble time if the dark halo in which the disk
is embedded deviates only slightly from spherical symmetry.
By carefully modeling the process of disk settling that is
driven by normal dissipative forces and comparing the
models with the observed kinematical properties of galaxies
with extended, warped H 1 layers, we hope to be able to
more carefully examine the viability of such models.

Steiman-Cameron & Durisen (1988, hereafter SCD88)
have developed this idea rather extensively. They have
adopted a numerical, cloud-fluid model to simulate the
time-dependent evolution of a galaxy disk that initially is
tilted out of the equatorial plane of an underlying, spher-
oidal dark halo. The disk is assumed to be composed of a
set of annular mass elements, or “clouds,” which act like
atoms in a viscous fluid. The SCD88 model has offered
some valuable physical insight into the time-dependent set-
tling process that is driven by normal dissipative forces, and
their dynamically generated model of a twisted galaxy disk
has been surprisingly successful at matching the peculiar
optical image of one particular galaxy, NGC 4753
(Steiman-Cameron, Kormendy, & Durisen 1992).

Our model is analogous to the one developed by SCDSS,
but it derives from an analytical prescription of the viscous
settling process. More specifically, we employ the “twisted
disk” equation formalism first developed by Bardeen &
Petterson (1975) and Petterson (1977, 1978) to describe the
time-dependent settling of a thin, viscous disk in a non-
spherical dark halo potential. This is a rather natural for-
malism to adopt because, as numerous kinematical “tilted
ring” models have demonstrated, warped H 1 galaxy disks
display a structure that resembles, at least qualitatively, the
twisted geometry that had once been thought to be impor-
tant in the accretion disks that surround certain compact
stellar objects (Bardeen & Petterson 1975; see a recent reju-
venation of this idea put forward by Maloney & Begelman
1997). In adapting the model to galaxy disks, we have
replaced the approximate Keplerian gravitational potential
used in earlier accretion disk work with a logarithmic
potential appropriate to galaxy halos. (Pringle 1992 also
recently described how the twisted disk formalism may be
adapted to galaxies.) In the limit of stress-free precession,
our model reproduces the analytical prescription of disk
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settling first presented by SCD88, but our model is not
constrained to this limit. A more general solution to the
governing equations predicts an exponential settling rate
that depends on time to the first power, rather than on time
to the third power as has been derived in the limit of stress-
free precession. Furthermore, an analytical, steady state
solution to the governing equations produces a twisted disk
structure that is very similar to previously constructed,
kinematical models. We demonstrate that projected surface
density maps and radial velocity maps derived from our
analytical model match published H 1 maps of five well-
studied warped disk galaxies (M83, NGC 300, NGC 2841,
NGC 5033, NGC 5055) very well.

2. THE GENERALIZED TWIST EQUATION

Bardeen & Petterson (1975) and Petterson (1978) have
written the hydrodynamic equations determining the struc-
ture and evolution of nonplanar, thin accretion disks in a
“twisted coordinate system.” In this system, the position P
on each ring of radius r is referenced to a local cylindrical
coordinate frame (r, Y, z'), which has been rotated with
respect to the Cartesian coordinate system of the central
reference ring by the two orientation angles y and f (see Fig.
1). For an appropriate choice of the two functions y(r) and
B(r), including, specifically, the assumption that f(r) < 1, the
equations separate into a set of the usual hydrodynamic
equations for a flat disk and a pair of coupled “twist
equations ” governing the orientation of the disk. Because of
its ability to describe an apparently complicated, fully three-
dimensional dynamical problem with a relatively simple
and elegant mathematical model, a number of different
groups have subsequently also adopted this formalism.
However, until recently there has been some disagreement
over what terms may be dropped from the fully three-
dimensional, nonlinear partial differential equations (due to
their “smallness ” relative to other terms) when deriving the
governing twist equations. (For a complete discussion of the
various simplifications and assumptions made in deriving
this formalism see Petterson 1977, 1978; Hatchett, Begel-
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F1G. 1.—Twisted coordinate system. The position P on each ring of
radius r is referenced to a local cylindrical coordinate frame (r, ¥, z'), which
has been rotated with respect to the Cartesian coordinate system (x, y, z) of
the central reference ring by the two orientation angles y and f (adapted
from Petterson 1977).
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man, & Sarazin 1981; and Papaloizou & Pringle 1983.) As
the following brief review points out, the disagreements
have not been over the general form of the equations but
rather over the precise value of certain coefficients of order
unity. Ultimately, as explained below, we have adopted the
derivation presented by Papaloizou & Pringle (1983).

According to Petterson (1978), the twist equations take
the following form:

ﬂ'+vrﬁ’=§Co<ﬁ”+Cl ﬁ/—v’2ﬂ>+i

r 2mv,,

2n
X J Frcos ydy,
0

. y ,y/ 2y/ﬁ/ 1
'=_Coly+C =
Y+ 0.y 3 0<? + Cy r+ B >+2nﬁv,,,

X fanT sin Y dyr , 0y

with C, =2 and C, = 1. In these expressions, dots and
primes denote differentiation with respect to time and
space, respectively; v, and v, are the radial and azimuthal
components of the fluid velocity; v is the vertically averaged
kinematical viscosity; and F; is an externally supplied
“twisting force.”

Hatchett et al. (1981, hereafter HBS) pointed out some
inconsistencies between Petterson’s (1978) derivation and
the earlier presentation by Bardeen & Petterson (1975).
Through an independent derivation, they determined that
the twist equations do take the form of equation (1), but
they concluded that the two coefficients should have the
values C, =1 and C, = —1. Most significantly, HBS
showed that the pair of twist equations can be written as a
single, complex twist equation of the form

W + v, W :% Co<w” +C, W7> +iL, @)
where the complex variable w is defined in terms of the
angles fand y as

w = (B sin y) — i(f cos ), 3
and

1 2z
L=—s—| Frep[o+ylay. @
o, Jo
Written in this form, the twist equation readily submits to
analytical solution for certain driving forces.

Papaloizou & Pringle (1983, hereafter PP) have sug-
gested that the HBS derivation also has shortcomings (for
example, as viscous evolution occurs according to the HBS
equations, angular momentum does not appear to be con-
served globally). They have derived a set of twist equations
that more consistently ties in with traditional a-disk models
and have demonstrated explicitly that their derived equa-
tions conserve angular momentum. As can most easily be
deduced from the presentations of Kumar & Pringle (1985)
and Pringle (1992), for a disk whose inner radius goes to
zero and whose surface density is independent of radius, the
PP derivation also leads to a complex twist equation that
takes the form of equation (2). However, adopting PP’s
“naive approach” in order to gain physical insight into the
nature of the problem [i.e., setting Kumar & Pringle’s func-
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tion f(x) = o], one concludes from these three papers that
the proper coefficients are

Co=1, (5a)
| ,dn(,/r) dinZ
€= [2 dinr | dinr |’ (50)
where
Z=r%,. (5¢)
For a Keplerian disk v, oc r~'/?; therefore, C, = +1 and
C, = —3/2. Interestingly, these are the same coefficients

that appear in Bardeen & Petterson’s (1975) earliest presen-
tation of the twist equations. Henceforth, we will adopt and
build on the twist equations derived by PP because it is
clear that in a viscous disk evolution that is governed by the
PP twist equations, angular momentum is conserved.

Petterson (1978), HBS, and PP each used an approx-
imately Keplerian potential to represent the underlying
gravitational potential well that governs disk dynamics.
While the Keplerian potential correctly describes the gravi-
tational field in which a thin accretion disk surrounding a
compact object sits, it is inappropriate for a thin galaxy disk
sitting in the potential well of a nonspherical dark matter
halo. By utilizing Kumar & Pringle’s (1985) and Pringle’s
(1992) extensions of the PP derivation, it is possible to gen-
eralize the complex twist equation to incorporate an arbi-
trary power-law form for the gravitational potential.
Specifically, adopting a rotation law of the form

v, ocr179 6)

expression (5b) becomes
C1=[—Zq+(3—Q)]- ()
Furthermore, as Petterson (1978) has pointed out, the radial

velocity can be expressed in terms of the vertically averaged
kinematical viscosity as

r o0 (v,
U'_vv,,,ﬁr<r>' ®

Employing our generalized rotation law, we therefore can
write

Ur:_q;' (9)

Using this expression in conjunction with equations (5a)
and (7), the complex twist equation (2) takes the form

y w
w=—|:w”+(3—q)—:|+iL. (10)
2 r
3. TWISTED DISKS IN A SCALE-FREE LOGARITHMIC
POTENTIAL

As outlined in § 1, our objective is to examine the evolu-
tion of a cold gaseous disk that is embedded in a spheroidal,
dark halo potential. In general, we assume that when the
gas is initially introduced into the halo potential well, the
orientation of its angular momentum vector is not aligned
with the symmetry axis of the halo. Because the halo is not
spherically symmetric, the halo’s gravitational field will
exert a finite “twisting force” on the gaseous disk; in sim-
plest terms, this field forces rings of gas at different radii to
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precess about the symmetry axis (or symmetry plane) of the
halo.

In the present context, a spheroidal dark matter halo can
be satisfactorily represented by a scale-free logarithmic
potential (cf. Richstone 1980; Steiman-Cameron & Durisen
1988, 1990). This potential is a useful approximation
because a circular disk orbiting inside such a potential will
exhibit a flat rotation curve (i.e., ¢ = 1 and v, is independent
of radius), as seen in real galaxies. In a halo potential of this
type, the precession frequency about the symmetry axis of
the potential w,, is

3 v

where 7 is a constant that measures the strength of the
quadrupole distortion of the halo and the minus (plus) sign
indicates that the spheroidal halo is oblate (prolate).

For a twisted disk embedded in a spheroidal potential
well, the twisting force that enters the derived twist equation
assumes precisely the same algebraic form as the twisting
force that Bardeen & Petterson (1975) used when modeling
the evolution of a disk orbiting a nonspherical, compact
stellar object, namely,

Fp=2w,v,psiny . (12)
Hence, from equation (4),
L=o,w, (13)

and we deduce that the evolution of a thin galaxy disk in a
scale-free logarithmic halo potential can be described by the

expression
w2 (w 2223, ) Y (14)
2 r) TN ")

Unless explicitly stated otherwise, we henceforth will adopt
the minus sign in front of the last term of this expression,
thereby assuming that the halo is oblate in shape.

Before the character of the general solutions to this
complex ordinary differential equation is examined, it is
worthwhile to demonstrate that when certain limiting
physical conditions are imposed, familiar analytical expres-
sions for the time variation of the inclination angle §(¢) and
the “twist” angle y(¢) are derivable from equation (14). This
will give us additional confidence that equation (14) offers a
valid description of the dynamics of a twisted galaxy disk.
We present, first, the limit of viscous-free precession, then
the limit of stress-free precession.

3.1. Viscous-free Precession

In the limit where viscous effects are completely negligi-
ble, v — 0 and equation (14) reduces to the case of free pre-
cession,

3 v,
._ 3. 1
i a1, (152)

with no associated evolutionary damping of orbit inclina-
tions, that is,

g=0. (15b)
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Equation (15a) can be integrated to give

i, ) = 7o) — (% " %)t : (16)

where y,(r) prescribes the twisting of the disk at time ¢ = 0.

3.2. Stress-free Precession

If the viscous stresses due to twisting have a negligible
effect on differential precession during the settling process—
a condition that SCD88 refer to as “stress-free
precession ”—one may set §” =9” = ' = 0 in the govern-
ing, complex twist equation. Under this condition, equation
(14) predicts the following evolutionary behavior:

sy L3,
TEVEY T (172)
B=—30)B. (17b)

This pair of equations matches equations (37a) and (37b) of
SCD88 except that the first term on the right-hand side of
equation (17a) is a factor of 2 larger than the equivalent
term in equation (37b) of SCD88. We suspect that the
SCDS88 result is in error, but we have been unable to iden-
tify where SCDS88 dropped the factor of 2 because their
published derivation was not sufficiently clear.

Furthermore, if we adopt the “stress-free” precession
condition introduced by SCDS8S, the first term in equation
(17a) is set to zero (hence the discrepant factor of 2 is not an
issue) and the equation reduces to the form of equation
(15a), hence,

, , 3 v
y =vo+<znr—ﬁ>t- (18)
With y;, = 0, equation (17b) specifically integrates to give
B = Bo exp [—(t/<.)], 19)

where

AOEHT

and B, is the value of the inclination at ¢ = 0. Hence, the
analytical settling model presented by SCDS88 (see also
Steiman-Cameron, Kormendy, & Durisen 1992) can be
straightforwardly derived from our generalized twist equa-
tion.

It is not at all clear how widely applicable the SCD88
analytical settling model is to the warped H 1 disks of
normal spiral galaxies because the simplifying assumptions
(e.g., B’ = y" = B’ = 0) are quite limiting. However, with the
analytical twist equation in hand, we can perform a less
restrictive examination of such systems.

3.3. General Separable Treatment
We begin by rewriting equation (14) in the form
w w
w=w'+2——i—, (21)
X x
where derivatives are now taken with respect to the dimen-
sionless time and space variables

T = t/ty, x=r/ry,
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and
to = gv(nv,,,)_z (22
ro = 3v(ny) " . (23)

If we assume that the spatial and temporal parts of the
complex angle w are separable, i.c.,

w=T() - {x), (24)
then
T =T, exp (—k’7), (25)
where k is in general complex and {(x) must be a solution of
c"+2§+<k2—1>g=0. (26)
X X

The above equation can be transformed by the substitut-
ions &2 = —4ix and {(x) = Z[(—4ix)'/*]/x'/?, into a form

that shows its relationship to Bessel’s equation:

P2 | 14Z() L1,

dfz +Ed_f+ l—g—zk ¢ Z(f)—(). (27)

The character of the solutions and the spectrum of k are
determined by boundary conditions, but some general com-
ments can be made without reference to specific boundary
conditions or initial state. The fact that one can do so is
important here since we do not have a well-posed problem
for which we know the initial state and the relevant bound-
ary conditions. For each k there is a radius x inside which
the third term inside the parentheses in equation (27) may
be neglected. In this region the solution behaves as J,(&).
We rule out Y; because it is not finite at the origin
(Abramowicz & Stegun 1972), whereas for plausible initial
states w must be finite everywhere. In general, the spectrum
of k may contain both growing and decaying modes. We do
not consider growing modes since their presence would
indicate instability. The fact that one can fit a number of
observational cases with the simpler solution in which only
decaying modes are present may be considered a justifica-
tion a posteriori of this assumption. In any case, it is clear
that if an arbitrary initial state can be written as a super-
position containing many values of k satisfying appropriate
boundary conditions, the behavior in the central region will
approach the solution with k = 0. This tendency manifests
itself as a function of time first near the center and later
further out as any contribution with large Re (k?) dies away
rapidly. Since the solution with k = 0 is formally the steady
state solution, we would expect it to apply more or less
universally to the interior regions of twisted disks, no
matter what the initial conditions were. The memory of the
initial conditions is erased inside out leaving at most an
exponentially decaying twist in the innermost regions.

Because the functions of primary interest to us ultimately
are f(x) and y(x), we note that

B=Tolk+ )" exp [-Re (],  (29)
y=O+¢)+7, 29)

where
C = CR + iCI » (30)
= —Im (K}, (1)
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F1G. 2.—Steady state behaviors of (a) the inclination angle f§ and (b) the
twisting angle y in terms of the dimensionless space variable x.

¢ =tan "' ({;/ln) - (32)

Because j = § = —Im (k?)/t,, we recognize also that for
a given k, the time-dependent solution of equation (21) pre-
sents a wave (with a “twisted ” spiral character) that propa-
gates azimuthally through the disk with a pattern speed

Im (k* 8 2
g i LA P

to 9 v

3.4. Steady State Solution

Drawing on the HBS discussion, we realize that an ana-
lytical solution to the steady state problem can be derived.
Specifically, setting w = 0 in equation (21) or k* =0 in
equation (27), we obtain formally

1 -
w= ﬁ Z,(/ —4ix), (34

where Z, is any first-order Bessel function of the first kind
(see Gradshteyn & Ryzhik 1965, § 8.491, eq. [3]). The physi-
cally most relevant solution appears to be Z, = J, because
in this case f is finite as x — 0 and as x increases, f§ increases
monotonically (Abramowicz & Stegun 1972). As a point of
reference for all subsequent models, then, we define the
steady state twisted disk function

Wy = % J(/—4ix) = % [ber,(2/X) + i bei;(2/%)] ;

(35)

Q,=
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where ber; and bei, are the Bessel real and Bessel imaginary
or Kelvin functions (see, e.g, McLachlan 1941;
Abramowicz & Stegun 1972). This solution leads to the
functions f(x) and y,(x) shown in Figure 2. From equation
(35) one can obtain f, and y in closed form as follows:

B = % M), (362)
Yes = 0:(24/%) + g ; (36b)

where M (x) and 6,(x) are the modulus and phase functions
for ber,(x) and bei, (x). Over the interval 1 < x < 20, f,, and
7, are approximated well by the expressions

X x \? x\3
B~ 1+ 1'20<E) + 0.75<E> + 1'22<E> . (37a)
T X x \? x\3
X 4
— 0.28<E> ] . (37b)

As we shall illustrate presently, the form of the function w,
over the interval 1 < x < 20 defines a warped disk model
whose features match the observed properties of a number
of individual H 1 disks.

4. APPLICATION TO GALAXIES

4.1. Standard Model

The steady state solution just derived is formally inap-
propriate for real galaxies, especially because the outermost
regions of real galaxy disks are unlikely to be described well
by time-independent conditions. However, over the
(innermost) regions of a galaxy disk where differential pre-
cession and viscous dissipation have been able to affect
appreciable settling in a Hubble time, we expect the spatial
structure of the disk to assume a form that is very similar to
the one portrayed by the function w(x). More specifically,
the discussion in § 3.3 and equations (28)—(32) suggest a
general time-dependent behavior of the form

B~glwgl, (382)
y ~tan~! [—Re (wy)/Im (wy)] , (38b)

where
g~ Boe ", (38¢)

is a spatial constant that describes the amplitude of the
warp at a given time and whose time evolution follows the
above form with ¢ being the lowest Re (k%) compatible with
boundary conditions. Again, since we do not have a well-
posed problem, all we can say is that whatever restrictions
the boundary conditions impose on the spectrum of k, only
the lowest Re (k?) will survive after some time. When com-
paring our model with the properties of real galaxy disks,
we will treat g as a free parameter that measures the overall
amplitude of a galaxy’s warp and will not be immediately
concerned about the values of §,, o, or the age of each disk.
The other free parameter that may be adjusted before our
twisted disk model is compared with real galaxy disks is
Xmax = Tmax/To> the radial cutoff to the function wy(x) that
will correspond to the maximum radial extent r,,, of a
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galaxy’s H 1 disk. Although r_,, can be specified for individ-
ual galaxies (see Table 1), the length scale r, as defined in
equation (23) cannot be specified a priori because neither of
the physical parameters v or # is known for individual gal-
axies. Hence, initially it was unclear to us what cutoff radius
Xmax (€., What range 0 < x < x,,,,) should be adopted for
our model. Fortunately, from previously published tilted
ring models of warped H 1 disks we were able to determine
how rapidly the warp angle f and the twist angle y vary
with radius in real galaxies. More specifically, we measured
the “pitch angles” dlnpf(x)/dlnx and dlny(x)/dlnx in
several systems, then looked for the range(s) of x in our
steady state model over which both pitch angle values
occurred simultaneously. We found good matches only
when x,,, ~ 10, that is, when galaxy models that match the
observations cannot be produced with values of x,,,, that
are orders of magnitude less than or greater than 10. Pre-
viously constructed tilted ring models also directed the
choices of the maximum warping amplitudes g in our
models.

4.2. Comparison with Specific Galaxies

By selecting a single value of x,,,, (specifically, x,,,, = 13)
and a rather narrow range of warp amplitudes g, we have
been able to match many of the qualitative features that are
frequently seen in the published H 1 maps of galaxies. For
example, using the model parameters identified in Table 1,
we have produced the surface brightness maps and radial
velocity maps depicted in Figure 3 for comparison with
published maps of the galaxies M83, NGC 300, NGC 2841,
NGC 5033, and NGC 5055.

Figure 3 actually has been pieced together from five
separate frames of a digital animation sequence with greater
than 600 frames in which the viewer “flies around” our
model disk, examining it from a variety of different lines of
sight. The two angles i, and ¢, uniquely define the orienta-
tion of the observer’s line of sight with respect to the (x, y, z)
Cartesian coordinate system (see Fig. 1) that is fixed in the
body of the galaxy. (When the inclination angle i, = 0° or
360°, the galaxy is being viewed face-on with its angular
momentum vector pointing directly at the observer; when
i, = 90°, the galaxy is seen edge-on with its angular momen-
tum vector pointing down. When the azimuthal orientation
angle t, = 0, the + x-axis is pointing to the right in each
image; when ¢, = 90°, the — y-axis is pointing to the right.)
In each frame of Figure 3, the disk is displayed in three
different ways: the right-hand image is the disk’s projected
two-dimensional velocity contour map; the central image is
the disk’s projected two-dimensional surface brightness
map; and the left-hand image presents a three-dimensional
rendering of an isodensity surface that encloses virtually the
entire disk. Each of the velocity contour maps and surface
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brightness maps in Figure 3 were produced with the three-
dimensional radiative transfer routine developed by Vith
(1994); each three-dimensional isodensity surface was gen-
erated using the interactive data language imaging package.
In the left-hand image of each frame, the light source reflec-
ting from the disk’s surface originates from the same posi-
tion as the viewer’s eye. The five frames displayed in Figure
3 were selected from our animation sequence because they
identify observer lines of sight from which our model’s pro-
jected two-dimensional maps match the published maps of
the five indicated galaxies well.

NGC 2841—To produce the frame of Figure 3 that is
identified as NGC 2841, we set g = 1.2 x 10~ 2 in our model
disk, which corresponds to a maximum warp at the edge of
the disk of 4°5. In Figure 3, the galaxy’s angular momentum
vector is pointed almost directly straight up (the disk is
tipped slightly so that the viewer is seeing the “top” side of
the galaxy), so velocity contours to the right of the kine-
matic minor axis are redshifted and contours to the left are
blueshifted. Our two-dimensional projected surface bright-
ness and velocity maps should be compared, respectively,
with the H 1 maps published as Figures 7a and 7b by Bosma
(1981). Bosma’s maps have been reprinted here in Figure 4a.
In order to make the relevant comparisons, the obser-
vational maps have been rotated counterclockwise approx-
imately 125° in order to properly orient them with respect
to our model images. After this rotation has been made, as
our three-dimensional rendering illustrates, the southern
edge of our model disk is farther away from the observer
than is its northern edge; this is consistent with the tilt
interpretation one derives from an optical photograph of
NGC 2841 and dust obscuration arguments (cf. Plate 14 in
Sandage 1961 and Table 3 of CTSC).

The velocity contour map of our model of NGC 2841
displays the same gentle, counterclockwise twist as the
observed H 1 velocity map. Furthermore, the north-south
extensions seen in Bosma’s surface brightness map of NGC
2841 can be identified with the “leading arm” features that
appear in the projected surface brightness image of our
twisted disk model.

M83.—To produce the frame of Figure 3 that is identified
as M83, we set g = 2.2 x 1072 in our model disk, which
corresponds to a maximum warp at the edge of the disk of
823. The model is oriented so that, in Figure 3, the galaxy’s
angular momentum vector is pointed into the page, almost
directly away from the observer. (With this orientation, the
optically visible spiral arms of M83—cf. Plate 28 in
Sandage 1961—are “trailing” spiral features.) The disk is
not being viewed precisely face-on; as displayed in Figure 3,
it is oriented such that, even if the disk were perfectly flat, its
upper half would be tipped slightly away from the observer
and its lower half toward the observer. As a result of this

TABLE 1

MODEL PARAMETERS

T nax Bumax v/ v
Galaxy (kpe) v lAkmsTY)  xp, @) (kms 'kpc) (kms 'kpc) 51073
NGC 2841...... 32 300 13 12E-2 4.5 1100 1.0 0.92
MS83 ...t 23 180 13 22E-2 8.3 480 0.53 1.1
NGC 5033...... 24 220 13 32E-2 12.0 610 0.58 0.94
NGC 5055...... 28 213 13 57E-2 21.3 690 0.78 1.1
NGC 300....... 15 94 13 STE-2 213 160 0.22 14

? From CTSC.
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NGC 2841 M83

ig=+ 125" ty=+289"

NGC 5055

NGC 300

F1G. 3.—Models of the five galaxies NGC 2841, M83, NGC 5033, NGC 5055, and NGC 300, based on the steady state solution of the complex twist
equation. In each frame, the left-hand image is a three-dimensional isodensity surface that encompasses virtually the entire disk; the central image is the
projected two-dimensional surface brightness map of the disk; and the right-hand image is the projected two-dimensional velocity contour map of the disk.

orientation, velocity contours to the right of the kinematic have been reprinted here in Figure 4b. In order to make the
minor axis are blueshifted and contours to the left are red- relevant comparisons, the observational maps have been
shifted. Our two-dimensional projected surface brightness rotated counterclockwise approximately 180° in order to
and velocity maps should be compared, respectively, with properly orient them with respect to our model images.

the H 1 maps published as Figures 2 and 3 by Rogstad, The velocity contour map produced by our twisted disk
Lockhart, & Wright (1974; hereafter RLW). RLW’s maps model of M83 displays most of the broad features that
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Fi1G. 4—Observational H 1 maps of five galaxies are reprinted here for comparison with the models shown in Fig. 3. As detailed in the text, each of these
maps has been rotated in order to properly orient it with respect to the corresponding model image. Observed surface brightness and velocity contour maps
appear on the left and right, respectively, of each panel (a)—(e). (a) Maps of NGC 2841 (Bosma 1981); (b) maps of M83 (RLW); (c) maps of NGC 5033 (Bosma

1981); (d) maps of NGC 5055 (Bosma 1981); and (e) maps of NGC 300 (RCC).

appear in the H 1 velocity map published by RLW. The
surface brightness map published by RLW displays a pair
of faint, “leading spiral ” arms that are not noticeable in the
image we have produced in Figure 3 from our model. (The
features are actually present in our model at a very low
amplitude level and can be enhanced somewhat by adjust-
ing the model parameter g. See, for example, the tilted ring

model developed by RLW and the model published by
CTSC.) Analogous features are present in our surface
brightness image of NGC 300, presented below. As the
three-dimensional isodensity surface of our model of M83
suggests, these spiral-arm features probably appear in pro-
jected surface brightness maps of M83 because the galaxy’s
twisted H 1 disk is bending toward the observer in the
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northwestern quadrant and away from the observer in the
southwestern quadrant.

NGC 5033—To produce the frame of Figure 3 that is
identified as NGC 5033, we set g = 3.2 x 10~ 2 in our model
disk, which corresponds to a maximum warp at the edge of
the disk of 12°. In Figure 3 (see also Fig. 5 and the related
discussion in § 4.3, below), the galaxy’s angular momentum
vector is pointed down and away from the observer, so
velocity contours to the right of the kinematic minor axis
are blueshifted and contours to the left are redshifted. Our
two-dimensional projected surface brightness and velocity
maps should be compared, respectively, with the H 1 maps
published as Figures 4a and 4b in Bosma (1981). Bosma’s
maps have been reprinted here in Figure 4c. In order to
make the relevant comparisons, the observational maps
have been rotated counterclockwise approximately 100° in
order to properly orient them with respect to our model
images.

Both the velocity contour image and the surface bright-
ness image produced by our model of NGC 5033 bear a
striking resemblance to Bosma’s published maps. The rela-
tively steep density gradients that are visible at the north-
east and southwest edges of Bosma’s surface brightness
maps are, according to our model, clearly due to the disk
bending toward the observer at one edge and away from the
observer at the other.

NGC 5055—To produce the frame of Figure 3 that is
identified as NGC 5055, we set g = 5.7 x 10~ 2 in our model
disk, which corresponds to a maximum warp at the edge of
the disk of 21°3. This galaxy’s angular momentum vector,
like that of NGC 5033 (notice that i, is the same in these
two systems), is pointed down and away from the observer,
so velocity contours to the right of the kinematic minor axis
are blueshifted and contours to the left are redshifted. Our
two-dimensional projected surface brightness and velocity
maps should be compared, respectively, with the H 1 maps



642 NEW ET AL.

Vol. 503

FI1G. 4e

published as Figures 6a and 6b in Bosma (1981). These
maps are reprinted in Figure 4d of this manuscript. In this
case, the observational maps did not need to be rotated
more than ~10° clockwise in order to make the relevant
comparisons.

Again, the velocity contour image and the surface bright-
ness image produced by our model bear a strong resem-
blance to Bosma’s published maps. Notice, in particular,
that from this line of sight, thin arcs are displayed in the

upper left-hand and lower right-hand regions of our model’s
projected surface brightness map. Bosma’s H 1 surface
brightness map definitely displays similar features.

NGC 300.—To produce the frame of Figure 3 that is
identified as NGC 300, we set g = 5.7 x 10~ 2 in our model
disk, which corresponds to a maximum warp at the edge of
the disk of 21?3. The model is oriented so that the galaxy’s
angular momentum vector is pointed out of the page,
almost directly at the observer. The disk is not being viewed

NGC 5033

F1G. 5—Three-dimensional isodensity surfaces for the (a) “ oblate ” and (b) “ prolate ” models of NGC 5033
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precisely face-on; as displayed in Figure 3, it is oriented
such that, even if the disk were perfectly flat, its upper half
would be tipped slightly toward the observer and its lower
half away from the observer. As a result of this orientation,
velocity contours to the right of the kinematic minor axis
are blueshifted and contours to the left are redshifted. Our
two-dimensional projected surface brightness and velocity
maps should be compared, respectively, with the H 1 maps
published as Figures 1 and 2 in Rogstad, Crutcher, & Chu
(1979; hereafter RCC). RCC’s maps have been reprinted
here in Figure 4e. In order to make the relevant compari-
sons, the observational maps have been rotated counter-
clockwise approximately 160° in order to properly orient
them with respect to our model images. Notice that after
this rotation has been made, our three-dimensional ren-
dered image of NGC 300 closely resembles the perspective
drawing of RCC’s tilted ring model (see their Fig. 6).

Notice, first, that the velocity contour image of our model
of NGC 300 closely resembles RCC’s published velocity
map. In addition, our surface brightness map displays a pair
of faint, “leading spiral ” arms that touch the left and right
edges of the image shown in Figure 3. We believe that these
arms provide an explanation for the faint features that
extend to the northwest and, particularly, southeast regions
of the RCC map.

4.3. Prograde Versus Retrograde Precession

The model that was used to generate images for Figure 3
was constructed assuming that the precessional frequency
w, was negative (see eq. [11]). That is, the underlying halo
was assumed to be oblate in shape, and, accordingly, the
precessional motions were assumed to be retrograde with
respect to the orbital motion of the gas. Because the magni-
tude of the precessional frequency decreases with increasing
radius in each disk, retrograde precession results in a physi-
cal twist that has a “leading” appearance in the three-
dimensional, rendered image of each system. (In contrast,
optically visible spiral arms are generally thought to be
“trailing ” features.) Knowing this, one can discern whether
the angular momentum vector of each galaxy is pointing
into (out of) the page by simply noticing whether the
warped structure exhibits an overall clockwise
(counterclockwise) twist.

As CTSC pointed out, an identically good fit to the H 1
maps can be obtained with a disk that exhibits a retrograde
twist (i.e., one that settles into a prolate spheroidal halo) as
with a disk that exhibits a prograde twist. After switching
the sign of w, in equation (11) to reverse the sense of the
twisting in the three-dimensional model, one need only
adjust one’s line-of-sight viewing angle according to the
prescription

i=n—1i,, (39)
t,=m—t, (40)

in order to generate projected velocity and surface density
maps from a “prolate ” model that are identical to the maps
generated from an “oblate” model. Figure 5b illustrates
what the “prolate” model for NGC 5033 looks like once
this transformation is employed.

If two quite different three-dimensional disk structures
(one with a prograde twist and one with a retrograde twist)
can generate identical two-dimensional maps when project-
ed onto the sky, how can one decipher which one offers the
physically more realistic model? As CTSC pointed out,
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information gleaned from optical photographs can often
provide the supplementary information that is needed to
identify which model is more realistic. For example, one
must insist that the angular momentum vector of M83
point away from the observer (into the page on Fig. 3) if its
optical spiral arms are to be interpreted as trailing features;
hence a warped disk model with a prograde twist (and set-
tling in an oblate spheroidal halo) as illustrated in Figure 3
is the preferred solution. Similar arguments (or ones based
on dust obscuration) lead one to conclude that the disks of
NGC 2841, NGC 5055,% and NGC 300 are also settling in
oblate spheroidal halos. However, for NGC 5033, the retro-
grade twisting (prolate spheroidal halo) model is clearly
preferable to the prograde twisting model. This statement is
supported by two arguments: first, dust obscuration in an
optical photograph of NGC 5033 (cf. Fig. 4a of CTSC and
Panel 127 of Sandage & Bedke 1994) identifies the western
edge of the galaxy as nearer to the observer than its eastern
edge; second, the model in Figure 5b must be chosen over
the model in Figure 5a if the optical spiral arms are to be
interpreted as trailing features. Hence, the three-
dimensional image of NGC 5033 shown in Figure 5b is the
correct depiction of the galaxy as inferred from our model
fitting.

4.4. Interpretation

4.4.1. Limited Range of Model Parameters

It should be noted that the animation sequence from
which the frames shown in Figure 3 were selected was orig-
inally constructed with the express intention of flying
through lines of sight that we previously had determined
would produce good fits to M83, NGC 5033, and NGC
300; the only intrinsic model parameter that was adjusted
during the flyby sequence was the overall warp amplitude g.
During our viewing of the flyby sequence, we also spotted
images that matched the published observational maps of
NGC 2841 and NGC 5055. The frames presented in Figure
3 have been taken directly from the original animation
sequence; absolutely no attempt has been made to fine-tune
the model parameters to fit these two additional galaxies
separately. Clearly, then, it is primarily the line-of-sight
viewing angle to each disk and not the parameters defining
the underlying structural properties of each disk that had to
be adjusted from galaxy to galaxy in order to match the
observations. Considering its simplicity—in particular, the
significantly reduced number of free parameters as com-
pared with previous tilted ring models—the agreement
between the projected maps of our model and observed H 1
maps is excellent. We conclude, therefore, that the function
wg(x) and the corresponding expressions for S, and y
given by equations (36a) and (36b) provide a good template
for matching the observed kinematical structure of H 1
disks. Because a single value of the parameter x,,,, and little
variation in the parameter g are required to achieve a good
model fit to five separate galaxies, we conclude that these
five systems intrinsically have very similar warped disk
structures.

4.4.2. Physical Interpretation

Most importantly, however, since the function w(x)
derives from a physically reasonable dynamical picture of

3 In our judgement, CTSC misidentified NGC 5055 as requiring a
prolate halo.
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disk settling, there is an expectation that our model pro-
vides insight into the underlying physical properties of these
systems. For example, since x,,, = 13 for each galaxy, we
conclude from definition (23) that in each galaxy, the ratio

% ~ 0.120, Ty ~ 600 km s ™! kpe = 2 x 102 cm? s~ !,

where r,,, is the outer radius of the observed H 1 disk.
(Table 1 shows the values of v/5 calculated individually for
each modeled system.) Also, if our model is relevant at all,
the existence of each warped layer indicates that viscous
settling has been effective in a Hubble time (t ~ H, ') and
T ~ 1/o. Without a proper understanding of the boundary
conditions, we are unable to determine the correct physical
value of o. Assuming for the moment that ¢ ~ 1 and setting
H,=75km s ! Mpc~!, we conclude from definition (22)
that

n_vz~ vsHy' ~ 600 km s~ Mpc .

These two ratios can only hold if, in each system,
v~06kms !kpc=2x 10?6 cm?s!
and
n~1073,

It is worth noting that the values obtained for v in all cases
(see Table 1) are consistent with a rough estimate of the
viscosity due to dissipational cloud-cloud collisions in the
solar neighborhood where v ~ 0.25 km s~ ! kpc (Lynden-
Bell & Pringle 1974). Very modest variations in cloud
dimensions, rms velocity, and filling factor from galaxy to
galaxy are sufficient to reproduce the range of values shown
in Table 1. The fact that reasonable viscosity estimates are
obtained by assuming o ~ 1 may be considered as a poste-
riori justification for our choice.

5. DISCUSSION AND CONCLUSIONS

Utilizing the formalism originally introduced by Petter-
son to describe warped and twisted accretion disk struc-
tures in Keplerian potentials, we have derived a single,
complex ordinary differential equation to describe time-
dependent settling of an H 1 disk in the logarithmic poten-
tial that appears to be typical of normal spiral galaxies.
Over the interval 1 < x <20, the analytical function
w(x)—derived from an analysis of the steady state limit of
the general twisted disk equation—appears to describe
quite accurately the general warped and twisted structure
that is exhibited by a number of galaxy disks. It should be
noted again that our analysis is based on the assumption
that the warping angle f < 1. For galaxies with larger
warps (including some that we have modeled) this is a sim-
plifying assumption and should be disregarded in more
proper treatments (see Pringle 1992).
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From our model fits we conclude that, quite generally,
the effective kinematical viscosity in these neutral hydrogen
disks is v ~ 0.6 km s~ ! kpc. That is, the effective Reynolds
number in these systems is

2
rmax vl// ~ xmax Ul[/ ~ 6000
v r ’

R ~

According to equation (9), this also implies that the ratio of
the radial inflow velocity of the gas to its orbital velocity is

v 1

L x—~10"%.
v, .

This model also provides a mechanism by which the
parameter 7—the quadrupole moment of the underlying
dark halo potential well—can be measured in spiral gal-
axies. Our fits to five normal spirals with well-studied
warped H 1 disks specifically indicate that n ~ 103, (This
value can be increased to n ~ 10~ 2, with a corresponding
factor of 10 increase in viscosity, only if the age of these
disks is assumed to be 0.1 H, '—which seems unlikely—or
if o in expression [38c] is found to be ~0.1.) Hence, we
conclude that the dark halos in which these warped disks sit
are, to quite high accuracy, spherically symmetric. This par-
ticular conclusion should not come as a surprise because
some time ago Tubbs & Sanders (1979) pointed out that if
warped disks are identified as transient structures, the warp
can only be sustained for a Hubble time if the underlying
halo potential is very nearly spherical. Although we have
examined in detail here only the steady state solution, the
derived time-dependent twisted disk equation provides a
tool that can be utilized to model the time evolution of
warped H 1 disks without resorting to elaborate numerical
techniques.

The twisted disk formalism in general, and the analytical
function w(x) in particular, provides an avenue through
which models of warped H 1 disks can advance from purely
kinematical fits (e.g., tilted ring models) to dynamical
models based on a reasonable physical model. In the future,
we also expect to use the time-dependent form of the twisted
disk equations as a point of comparison for fully three-
dimensional gas dynamic simulations of H 1 disks settling
into distorted halo potentials.
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